Journal of Tea Science ›› 2021, Vol. 41 ›› Issue (3): 419-429.doi: 10.13305/j.cnki.jts.2021.03.008
• Research Paper • Previous Articles Next Articles
WANG Yixiang1,2, HUANG Jiaqing1,2, YE Jing1,2, LI Yanchun1,2, LIN Yi1,2, LIU Cenwei1,2
Received:
2020-09-04
Revised:
2020-10-27
Online:
2021-06-15
Published:
2021-06-15
CLC Number:
WANG Yixiang, HUANG Jiaqing, YE Jing, LI Yanchun, LIN Yi, LIU Cenwei. Effects of Biochar Application on Soil Properties and Fungi Community Structure in Acidified Tea Gardens[J]. Journal of Tea Science, 2021, 41(3): 419-429.
[1] 王义祥, 辛思洁, 叶菁, 等. 生物炭对强酸性茶园土壤酸度的改良效果研究[J]. 中国农学通报, 2018, 34(12): 108-111. Wang Y X, Xin S J, Ye J, et al.Improvement effect of biochar on soil acidity in strong acidity tea garden[J]. Chinese Agricultural Science Bulletin, 2018, 34(12), 108-111. [2] 杨冬雪, 钟珍梅, 陈剑侠, 等. 福建省茶园土壤养分状况评价[J]. 海峡科学, 2010(6): 129-131. Yang D X, Zhong Z M, Chen J X, et al.Evaluation of soil nutrient status of tea gardens in Fujian[J]. Straits Science, 2010(6): 129-131. [3] 胡雲飞, 李荣林, 杨亦扬. 生物炭对茶园土壤CO2和N2O排放量及微生物特性的影响[J]. 应用生态学报, 2015, 26(7): 1954-1960. Hu Y F, Li R L, Yang Y Y.Effects of biochar on CO2 and N2O emissions and microbial properties of tea garden soils[J]. Chinese Journal of Applied Ecology, 2015, 26(7): 1954-1960. [4] Demisie W, Liu Z Y, Zhang M K.Effect of biochar on carbon fractions and enzyme activity of red soil[J]. Catena, 2014, 121: 214-221. [5] 高文慧, 叶菁, 刘朋虎, 等. 农业废弃物生物质炭化技术及其应用进展[J]. 亚热带农业研究, 2019, 15(4): 279-284. Gao W H, Ye J, Liu P H, et al.Reviews on the application of carbonization technology of agricultural waste biomass[J]. 2019, 15(4): 279-284. [6] 李发虎, 李明, 刘金泉, 等. 生物炭对温室黄瓜根际土壤真菌丰度和根系生长的影响[J]. 农业机械学报, 2017, 48(4): 270-275, 346. Li F H, Li M, Liu J Q, et al.Effect of biochar on fungal abundance of rhizosphere soil and cucumber root growth in greenhouse[J]. Transactions of The Chinese Society of Agricultural Machinery, 2017, 48(4): 270-275, 346. [7] Chen J H, Liu X Y, Zheng J W, et al.Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China[J]. Applied Soil Ecology, 2013, 71: 33-44. [8] Hu L, Cao L X, Zhang R D.Bacterial and fungal taxon changes in soil microbial community composition induced by short-term biochar amendment in red oxidized loam soil[J]. World Journal of Microbiology and Biotechnology, 2014, 30(3): 1085-1092. [9] 陈义轩, 宋婷婷, 方明, 等. 四种生物炭对潮土土壤微生物群落结构的影响[J]. 农业环境科学学报, 2019, 38(2): 394-404. Chen Y X, Song T T, Fang M, et al.The effect of four biochar on the structure of microbial communities in alluvial soil[J]. Journal of Agro-Environment Science, 2019, 38(2): 394-404. [10] 王洪媛, 盖霞普, 翟丽梅, 等. 生物炭对土壤氮循环的影响研究进展[J]. 生态学报, 2016, 36(19): 5998-6011. Wang H Y, Gai X P, Zhai L M, et al.Effect of biochar on soil nitrogen cycling: a review[J]. Acta Ecologica Sinica, 2016, 36(19): 5998-6011. [11] 尚杰, 耿增超, 陈心想, 等. 施用生物炭对旱作农田土壤有机碳、氮及其组分的影响[J]. 农业环境科学学报, 2015, 34(3): 509-517. Shang J, Geng Z C, Chen X X, et al.Effects of biochar on soil organic carbon and nitrogen and their fractions in a rainfed farmland[J]. Journal of Agro-Environment Science, 2015, 34(3): 509-517. [12] 黄燕, 黎珊珊, 蔡凡凡, 等. 生物质炭土壤调理剂的研究进展[J]. 土壤通报, 2016, 47(6): 1514-1520. Huang Y, Li S S, Cai F F, et al.Research progress of biochar used as soil conditioner[J]. Chinese Journal of Soil Science, 2016, 47(6): 1514-1520. [13] 郑慧芬, 吴红慧, 翁伯琦, 等. 施用生物炭提高酸性红壤茶园土壤的微生物特征及酶活性[J]. 中国土壤与肥料, 2019(2): 68-74. Zheng H F, Wu H H, Weng B Q, et al.Improved soil microbial characteristics and enzyme activities with wheat straw biochar addition to an acid tea plantation in red soil[J]. Soil and Fertilizer Sciences in China, 2019(2): 68-74. [14] Dai Z M, Zhang X J, Tang C, et al. Potential role of biochars in decreasing soil acidification: a critical review [J]. Science of The Total Environment, 2017, 581/582: 601-611. [15] Shi R Y, Ni N, Nkoh J N, et al.Beneficial dual role of biochars in inhibiting soil acidification resulting from nitrification[J]. Chemosphere, 2019, 234: 43-51. [16] de Wit H A, Groseth T, Mulder J. Predicting aluminum and soil organic matter solubility using the mechanistic equilibrium model WHAM[J]. Soil Science Society of America Journal, 2001, 65(4): 1089-1100. [17] Lehmann J, Joseph S.Biochar for environmental management: an introduction[M]. London: Earthscan, 2009. [18] Lehmann J, da Silva J P, Steiner C, et al. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central Amazon basin: fertilizer, manure and charcoal amendments[J]. Plant and Soils, 2003, 249(2): 343-357. [19] Deenik J L, Clellan T M, Uehara G.Charcoal volatile matter content influences plant growth and soil nitrogen transformations[J]. Soil Fertility and Plant Nutrition, 2010, 74(4): 1259-1270. [20] Zackrisson O, Nilsson M C, Wardle D A.Key ecological function of charcoal from wildfire in the boreal forest[J]. Oikos, 1996, 77: 10-19. [21] Li Y C, Li Z, Li Z W, et al.Variations of rhizosphere bacterial communities in tea ( [22] Warnock D D, Lehmann J, Kuyper T W, et al.Mycorrhizal responses to biochar in soil-concepts and mechanisms[J]. Plant and Soil, 2007, 300(1/2): 9-20. [23] 陈泽斌, 高熹, 王定斌, 等. 生物炭不同施用量对烟草根际土壤微生物多样性的影响[J]. 华北农学报, 2018, 33(1): 224-232. Chen Z B, Gao X, Wang D B, et al.Effects of different biochar application rates on rhizosphere soil microbial diversity of tobacco[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(1): 224-232. [24] Ding J, Jiang X, Guan D, et al.Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols[J]. Applied Soil Ecology, 2017, 111: 114-122. [25] 马泊泊, 黄瑞林, 张娜, 等. 秸秆生物质炭对根际土壤细菌-真菌群落分子生态网络的影响[J]. 土壤学报, 2019, 56(4): 964-974. Ma B B, Huang R L, Zhang N, et al.Effect of Straw-derived biochar on molecular ecological network between bacterial and fungal communities in rhizosphere soil[J]. Acta Pedologica Sinica, 2019, 56(4): 964-974. [26] Hu L, Cao L X, Zhang R D.Bacterial and fungal taxon changes in soil microbial community composition induced by short-term biochar amendment in red oxidized loam soil[J]. World Journal of Microbiology and Biotechnology, 2014, 30: 1085-1092. [27] Edenborn S L, Johnson L M K, Edenborn H M, et al. Amendment of a hardwood biochar with compost tea: effects on plant growth, insect damage and the functional diversity of soil microbial communities[J]. Biological Agriculture & Horticulture, 2018, 34(2): 88-106. [28] Van Wees S C, Van d E S, Pieterse C M. Plant immune responses triggered by beneficial microbes[J]. Current Opinion in Plant Biology, 2008, 11(4): 443-448. [29] Ghanbarzadeh B, Safaie N, Goltapeh E M.Antagonistic activity and hyphal interactions of [30] 谭悠久. 毛壳科Chaetomiaceae分类及分子系统发育研究[D]. 杨凌: 西北农林科技大学, 2005. Tan Y J.Classification, identification and molecular phylogenetics of the family Chaetomiaceae [D]. Yangling: Northwest Agriculture and Forestry University, 2005. [31] Voglmayr H, Rossman A Y, Castlebury L A, et al.Multigene phylogeny and taxonomy of the genus [32] Zheng J F, Chen J H, Pan G X, et al.Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from Southwest China[J]. Science of the Total Environment, 2016, 571: 206-217. [33] 阎海涛, 殷全玉, 丁松爽, 等. 生物炭对褐土理化特性及真菌群落结构的影响[J]. 环境科学, 2018, 39(5): 2412-2419. Yan H T, Yin Q Y, Ding S S, et al.Effect of biochar amendment on physicochemical properties and fungal community structures of cinnamon soil[J]. Environmental Science, 2018, 39(5): 2412-2419. [34] Yao Q, Liu J J, Yu Z H, et al.Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China[J]. Soil Biology & Biochemistry, 2017, 110: 56-67. |
[1] | WU Jing, CHEN Nannan, HAN Menglin, CHEN Gao, LI Weiwei, ZHANG Shuxiang, JIANG Xiaolan. Isolation, Identification and Characterization of Aluminum-tolerant Growth-promoting Endophytic Bacteria in Tea Roots [J]. Journal of Tea Science, 2022, 42(5): 610-622. |
[2] | ZHOU Hanchen, YANG Jihong, XU Yujie, WU Qiong, LEI Pandeng. Phylogenetic Analysis of NUDX1 Gene Involved in Geraniol Biosynthesis [J]. Journal of Tea Science, 2022, 42(5): 638-648. |
[3] | LI Yanchun, WANG Hang, LI Zhaowei, YE Jing, WANG Yixiang. Ameliorative Effect of Several Measures on Soil Physicochemical Properties and Microbial Community Structures in Acidified Tea Gardens [J]. Journal of Tea Science, 2022, 42(5): 661-671. |
[4] | LI Jing, LIN Cairong, HUANG Yan, DENG Xuming, WANG Yiqing, SUN Weijang. Effects of Tea Polyphenols on Agrobacterium-mediated Plant Genetic Transformation System [J]. Journal of Tea Science, 2022, 42(4): 477-490. |
[5] | WANG Tao, WANG Yiqing, QI Siyu, ZHOU Zhe, CHEN Zhidan, SUN Weijiang. Identification and Transcriptional Regulation of CLH Gene Family and Expression Analysis in Albino Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 331-346. |
[6] | YANG Ni, LI Yimin, Li Jingwen, TENG Ruimin, CHEN Yi, WANG Yahui, ZHUANG Jing. Effects of Exogenous 5-ALA on the Chlorophyll Synthesis and Fluorescence Characteristics and Gene Expression of Key Enzymes in Tea Plants under Drought Stress [J]. Journal of Tea Science, 2022, 42(2): 187-199. |
[7] | ZHU Wen, WU Shuang, WANG Wenfeng, XU Wencan, CHEN Wenjun, HUANG Youyi. The Screening, Identification and Enzyme Production of Thermophilic Bacteria in Pile-fermentation of Qingzhuan Tea [J]. Journal of Tea Science, 2022, 42(2): 211-221. |
[8] | CHEN Xiaomin, ZHAO Feng, WANG Shuyan, SHAO Shuxian, WU Wenxi, LIN Qin, WANG Pengjie, YE Naixing. Purine Alkaloid Evaluation and Excellent Resources Screening of Fujian Wild Tea [J]. Journal of Tea Science, 2022, 42(1): 18-28. |
[9] | LIU Qingshuai, QU Furong, WEI Mengyuan, ZHONG Hong, WANG Yi, CHEN Liang, JIN Jiqiang. The Genetic Variation of the Chemical Components of the ‘Jinxuan' × ‘Zijuan' F1 Segregating Population Based on UPLC [J]. Journal of Tea Science, 2022, 42(1): 29-40. |
[10] | ZHOU Shaofeng, QIAN Yunfei, ZHAO Zhen, CHEN Xuan, LI Xinghui. Effect of the Tea with Different Degrees of Fermentation on the Formation of Tea Scum [J]. Journal of Tea Science, 2022, 42(1): 76-86. |
[11] | CUI Shaowei, ZHAO Dongxiang, ZHANG Jiaxia, SHANG Jiannong, CAI Xiaoming, LI Zhaoqun, BIAN Lei, XIU Chunli, FU Nanxia, CHEN Zongmao, LUO Zongxiu. Sex Pheromone of Andraca bipunctata Mainland Population in China: Identification and Population Monitoring [J]. Journal of Tea Science, 2022, 42(1): 101-108. |
[12] | LIU Yanan, LIU Mengyuan, HUANG Liyun, KANG Zhiwei, XU Yongyu, CHEN Zhenzhen. Analysis of Diversity and Temporal Patterns of the Insect Communities in Tea Gardens [J]. Journal of Tea Science, 2022, 42(1): 109-119. |
[13] | YAN Minghui, LIU Ke, WANG Man, LYU Ying, ZHANG Qian. Complete Chloroplast Genome of Camellia sinensis cv. Xinyang 10 and Its Phylogenetic Evolution [J]. Journal of Tea Science, 2021, 41(6): 777-788. |
[14] | XIE Wengang, CHEN Wei, TAN Liqiang, YAN Linfeng, TANG Qian. Analysis of Bud and Leaf Characters and Photosynthetic Characteristics of Three Tea Cultivars in Sichuan [J]. Journal of Tea Science, 2021, 41(6): 813-822. |
[15] | WU Xin, SONG Feihu, PEI Yongsheng, ZHU Guanyu, JIANG Lebing, NING Wenkai, LI Zhenfeng, LIU Benying. Study on the Tea Quality Changes and Predictions during the Microwave Fixation Process by Machine Vision [J]. Journal of Tea Science, 2021, 41(6): 854-864. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|