Journal of Tea Science ›› 2023, Vol. 43 ›› Issue (1): 91-108.doi: 10.13305/j.cnki.jts.2023.01.007
• Research Paper • Previous Articles Next Articles
LU Li1,2, ZHAN Dongmei1,2, ZHOU Chengzhe1,2,3, ZHU Chen1,2,3, XIE Siyi1,2, XU Kai1,2, TIAN Caiyun1,2, LAI Zhongxiong1,3, GUO Yuqiong1,2,*
Received:
2022-09-19
Revised:
2022-12-06
Online:
2023-02-15
Published:
2023-03-01
CLC Number:
LU Li, ZHAN Dongmei, ZHOU Chengzhe, ZHU Chen, XIE Siyi, XU Kai, TIAN Caiyun, LAI Zhongxiong, GUO Yuqiong. Effects of Key Genes of Jasmonic Acid Synthesis and Transduction Pathway in Tea Plant on Terpenoids during Oolong Tea Processing[J]. Journal of Tea Science, 2023, 43(1): 91-108.
[1] 陆续, 江伟民, 唐克轩. 茉莉酸类物质在植物次生代谢调控方面的研究进展[J]. 上海交通大学学报(农业科学版), 2011, 29(6): 87-91. Lu X, Jiang W M, Tang K X.Research progress of jasmonates' regulation on the plant secondary metabolism[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2011, 29(6): 87-91. [2] Wasternack C, Hause B.Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in [3] Minato N, Himeno M, Hoshi A, et al.The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways[J]. Scientific Reports, 2014, 4: 7399. doi: 10.1038/srep07399. [4] 冉燕子. 苗期低温胁迫对烟草JA信号途径部分关键基因表达及JA含量的影响[D]. 重庆: 西南大学, 2017. Ran Y Z.Effects of low temperature stress on expression of part key gene in JA signaling pathway and JA content of tobacco at seeding stage [D]. Chongqing: Southwest University, 2017. [5] Zang Y X, Ge J L, Huang L H, et al.Leaf and root glucosinolate profiles of Chinese cabbage ( [6] 王晨, 安立成, 李剑超, 等. 北柴胡MYC2转录因子的克隆及茉莉酸诱导的调控分析[J]. 植物生理学报, 2021, 57(2): 439-450. Wang C, An L C, Li J C, et al.Cloning of the MYC2 transcription factor from [7] 张懿. 机械损伤下麻疯树CURCIN2的诱导表达及对茉莉酸的响应[D]. 西安: 西北大学, 2021. Zhang Y, Induced expression of CURCIN2 under mechanical wounding and its response to jasmonate [D]. Xi'an: Northwestern University, 2021. [8] 于涌鲲, 郝玉兰, 万善霞, 等. 茉莉酸类物质的生物合成及其信号转导研究进展[J]. 自然科学进展, 2008, 18(9): 961-967. Yu Y K, Hao Y L, Wan S X, et al.Research progress on biosynthesis and signal transduction of jasmonic acid[J]. Progress in Natural Science, 2008, 18(9): 961-967. [9] 刘庆霞, 李梦莎, 国静. 茉莉酸生物合成的调控及其信号通路[J]. 植物生理学报, 2012, 48(9): 837-844. Liu Q X, Li M S, Guo J.Regulation of jasmonic acid biosynthesis and jasmonic acid signaling pathway[J]. Plant Physiology Journal, 2012, 48(9): 837-844. [10] Gfeller A, Baerenfaller K, Loscos J, et al.Jasmonate controls polypeptide patterning in undamaged tissue in wounded Arabidopsis leaves[J]. Plant Physiology, 2011, 156(4): 1797-1807. [11] 张超. 茉莉酸调控基因GH3家族的鉴定及在马铃薯中抗病及损伤分析[D]. 杨凌: 西北农林科技大学, 2021. Zhang C.Identification of jasmonic acid regulatory gene GH3 family and analysis of disease resistance and wounding in potato [D]. Yangling: Northwest Agricultural and Forestry University, 2021. [12] Dave A, Graham I A.Oxylipin signaling: a distinct role for the jasmonic acid precursor [13] Pauwels L, Barbero G F, Geerinck J, et al.NINJA connects the co-repressor TOPLESS to jasmonate signalling[J]. Nature, 2010, 464(7289): 788-791. [14] 吕嘉. CRISPR/Cas9编辑 Lü J.Effect of CRISPR/Cas9-edited [15] Zhu J C, Chen F, Wang L Y, et al.Evaluation of the synergism among volatile compounds in Oolong tea infusion by odour threshold with sensory analysis and E-nose[J]. Food Chemistry, 2017, 221: 1484-1490. [16] Zeng L T, Zhou X C, Su X G, et al.Chinese oolong tea: an aromatic beverage produced under multiple stresses[J]. Trends in Food Science & Technology, 2020, 106: 242-253. [17] 欧伊伶. 槠叶齐夏秋乌龙茶加工工艺及香味品质形成机理研究[D]. 长沙: 湖南农业大学, 2019. Ou Y L.Study on the processing technology and quality formation mechanism of zhuyeqi summer oolong tea [D]. Changsha: Hunan Agricultural University, 2019. [18] Zhu C, Zhang S T, Fu H F, et al.Transcriptome and phytochemical analyses provide new insights into long non-coding RNAs modulating characteristic secondary metabolites of oolong tea ( [19] Zeng L T, Wang X W, Liao Y Y, et al.Formation of and changes in phytohormone levels in response to stress during the manufacturing process of oolong tea ( [20] Li J L, Zeng L Y, Liao Y Y, et al.Influence of chloroplast defects on formation of jasmonic acid and characteristic aroma compounds in tea ( [21] 林馨颖, 王鹏杰, 陈雪津, 等. 茶树LOX基因家族的鉴定及其在白茶萎凋过程的表达分析[J]. 茶叶科学, 2021, 41(4): 482-496. Lin X Y, Wang P J, Chen X J, et al.Identification of LOX gene family in [22] 胡清财, 郑玉成, 杨云, 等. 茶树COI1基因家族的鉴定及其在乌龙茶加工中的表达[J]. 应用与环境生物学报, 2022, 28(6): 1496-1502. Hu Q C, Zheng Y C, Yang Y, et al.Identification and expression of COI1 gene family in [23] 舒心, 高彦祥. 茶叶挥发性成分提取及其香气特征分析研究进展[J]. 食品工业科技, 2022, 43(15): 469-480. Shu X, Gao Y X.Research progress on extraction of volatile compounds and analysis of aroma characteristics in tea[J]. Science and Technology of Food Industry, 2022, 43(15): 469-480. [24] 王梦琪, 朱荫, 张悦, 等. 茶叶挥发性成分中关键呈香成分研究进展[J]. 食品科学, 2019, 40(23): 341-349. Wang M Q, Zhu Y, Zhang Y, et al.A review of recent research on key aroma compounds in tea[J]. Food Science, 2019, 40(23): 341-349. [25] 苗爱清, 吕海鹏, 孙世利, 等. 乌龙茶香气的HS-SPME-GC-MS/GC-O研究[J]. 茶叶科学, 2010, 30(s1): 583-587. Miao A Q, Lyu H P, Sun S L, et al.Aroma components of oolong tea by HS-SPME-GC-MS and GC-O[J]. Journal of Tea Science, 2010, 30(s1): 583-587. [26] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the [27] Liu L, Chen H R, Zhu J Y, et al.miR319a targeting of CsTCP10 plays an important role in defense against gray blight disease in tea plant ( [28] Zhou C Z, Zhu C, Tian C Y, et al.Integrated volatile metabolome, multi-flux full-length sequencing, and transcriptome analyses provide insights into the aroma formation of postharvest jasmine ( [29] Xu K, Tian C Y, Zhou C Z, et al.Non-targeted metabolomics analysis revealed the characteristic non-volatile and volatile metabolites in the [30] Yang X G.Aroma constituents and alkylamides of red and green huajiao ( [31] 欧阳珂, 张成, 廖雪利, 等. 基于感官组学分析玉米香型南川大茶树工夫红茶特征香气[J]. 茶叶科学, 2022, 42(3): 397-408. Ouyang K, Zhang C, Liao X L, et al.Characterization of the key aroma in corn-scented congou black tea manufactured from [32] 陈林, 陈键, 陈泉宾, 等. 做青工艺对乌龙茶香气组成化学模式的影响[J]. 茶叶科学, 2014, 34(4): 387-395. Chen L, Chen J, Chen Q B, et al.Effects of green-making technique on aroma pattern of oolong tea[J]. Journal of Tea Science, 2014, 34(4): 387-395. [33] 黄福平, 陈荣冰, 梁月荣, 等. 乌龙茶做青过程中香气组成的动态变化及其与品质的关系[J]. 茶叶科学, 2003, 23(1): 31-37. Huang F P, Chen R B, Liang Y R, et al.Changes of aroma constituents during zuoqing procedure and its relation to oolong tea quality[J]. Journal of Tea Science, 2003, 23(1): 31-37. [34] Zeng L T, Zhou Y, Gui J D, et al.Formation of volatile tea constituent indole during the oolong tea manufacturing process[J]. Journal of Agricultural and Food Chemistry, 2016, 64(24): 5011-5019. [35] Shi J, Xie D C, Qi D D, et al.Methyl jasmonate-induced changes of flavor profiles during the processing of green, oolong, and black tea[J]. Frontiers in Plant Science, 2019, 10: 781. doi: 10.3389/fpls.2019.00781. [36] Feng Z H, Li Y F, Li M, et al.Tea aroma formation from six model manufacturing processes[J]. Food Chemistry, 2019, 285: 347-354. [37] 张韵, 李蕙蕙, 周圣弘. 基于OAV对3种高香种工夫红茶的香气特征分析[J]. 食品研究与开发, 2020, 41(21): 184-191. Zhang Y, Li H H, Zhou S H.Analysis of fragrance characteristics in three congou black teas of highly fragrant species using odor active values[J]. Food Research and Development, 2020, 41(21): 184-191. [38] 张铭铭, 尹洪旭, 邓余良, 等. 基于HS-SPME/GC×GC- TOFMS/OAV不同栗香特征绿茶关键香气组分分析[J]. 食品科学, 2020, 41(2): 244-252. Zhang M M, Yin H X, Deng Y L, et al. Analysis of key odorants responsible for different chestnut-like aromas of green teas based on headspace solid-phase microextraction coupled with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry and odor [J]. Food Science, 2020, 41(2): 244-252. [39] Van Gemert L J. Compilations of flavour threshold values in water and other media[M]. Utrecht: Oliemans Punter & Partners BV, 2018. [40] Robin J, Ashu G.Fractionation and identification of minor and aroma-active constituents in Kangra orthodox black tea[J]. Food Chemistry, 2015, 167: 290-298. [41] 毛佳昊, 熊晓辉, 卢一辰. 茉莉酸调控植物应对逆境胁迫作用的研究进展[J]. 生物加工过程, 2021, 19(4): 413-419. Mao J H, Xiong X H, Lu Y C.Advances in the regulation of plant stress response by jasmonic acid[J]. Chinese Journal of Bioprocess Engineering, 2021, 19(4): 413-419. [42] Ruan J J, Zhou Y X, Zhou M L, et al.Jasmonic acid signaling pathway in plants[J]. International Journal of Molecular Sciences, 2019, 20(10): 2479. doi: 10.3390/ijms20102479. [43] Deepika, Singh A.Expression dynamics indicate the role of jasmonic acid biosynthesis pathway in regulating macronutrient (N, P and K+) deficiency tolerance in rice ( [44] 陈寿松. 乌龙茶光萎凋过程香气代谢的分子机制及品质调控研究[D]. 福州: 福建农林大学, 2017. Chen S S.Study on molecular mechanism of volatiles metabolism and quality regulation during light withering process in oolong tea [D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. [45] 马洪磊. 植物辅抑制因子TPL/TPR蛋白结构与EAR基序相互作用分子机理研究[D]. 上海: 中国科学院上海药物研究所, 2016. Ma H L.Structure of plant co-repressor TPL/TPR protein provides insights into mechanism of EAR motif binding [D]. Shanghai: Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 2016. [46] Causier B, Ashworth M, Guo W, et al.The TOPLESS interactome: a framework for gene repression in Arabidopsis[J]. Plant Physiology, 2012, 158(1): 423-438. [47] An C P, Deng L, Zhai H W, et al.Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis[J]. Molecular Plant, 2022, 15(8): 1329-1346. [48] Zhang C P, Lei Y T, Lu C K, et al.MYC2, MYC3, and MYC4 function additively in wounding-induced jasmonic acid biosynthesis and catabolism[J]. Journal of Integrative Plant Biology, 2020, 62(8): 1159-1175. [49] Ogawa S, Kawahara M R, Miyamoto K, et al.OsMYC2 mediates numerous defence-related transcriptional changes via jasmonic acid signalling in rice[J]. Biochemical and Biophysical Research Communications, 2017, 486(3): 796-803. [50] 郑玉成, 谷梦雅, 毕婉君, 等. 茶树MYC转录因子家族的全基因组鉴定及表达分析[J]. 福建农业学报, 2021, 36(9): 1007-1016. Zheng Y C, Gu M Y, Bi W J, et al.Genome-wide analysis and expression pattern of MYC family in [51] Zhao M Y, Zhang N, Gao T, et al.Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants[J]. The New Phytologist, 2020, 226(2): 362-372. [52] Zhang X, Zhang Y, Wang Y H, et al.Transcriptome analysis of [53] 姚尹伊, 何梦玲, 李莹莹, 等. 广藿香萜类化合物生物合成及代谢调控研究进展[J]. 中国中药杂志, 2021, 46(21): 5560-5567. Yao Y Y, He M L, Li Y Y, et al.Biosynthesis and metabolism regulation of terpenoids in [54] Hong G J, Xue X Y, Mao Y B, et al. [1] 朱晨, 张舒婷, 周承哲, 等. 萎凋处理对乌龙茶风味品质形成的转录组分析[J]. 生物工程学报, 2022, 38(1): 303-327. Zhu C, Zhang S T, Zhou C Z, et al.Transcriptome analysis reveals the role of withering treatment in flavor formation of oolong tea ( |
[1] | YAN Duo, YU Penghui, GONG Yushun. Research Progress on the Impact of Environmental Stresses on Tea Quality during the Withering Process [J]. Journal of Tea Science, 2025, 45(1): 1-14. |
[2] | DONG Yuan, ZHANG Yongheng, XIAO Yezi, YU Youben. Cloning of BZR1 Gene Family in Tea Plants and Molecular Mechanism Study of CsBZR1-5 Response to Drought Stress [J]. Journal of Tea Science, 2025, 45(1): 15-28. |
[3] | YANG Nan, LI Zhuan, LIU Meichen, MA Junjie, SHI Yuntao, WEI Xiangning, LIN Yangshun, MAO Yuyuan, GAO Shuilian. Studies on the Regulation of EGCG Biosynthesis in Tea Plants by Potassium Nutrition [J]. Journal of Tea Science, 2024, 44(6): 887-900. |
[4] | ZHAO Qian, LIU Qian, CAI-HE Jiayi, HE Jieqi, FANG Yunya, LIU Yuxin, CHEN Chao, ZHENG Yaodong, ZHANG Tianjing, YU Wenjuan, YANG Guang. Effects of Combined Drought and Low-temperature Stress on Photosynthetic Physiological Characteristics of Tea Plants and Simulation Prediction [J]. Journal of Tea Science, 2024, 44(6): 901-916. |
[5] | LIU Xiaolu, ZHU Yalan, YU Min, GAI Xinyue, FAN Yangen, SUN Ping, HUANG Xiaoqin. Changes in Cell Wall Structure and Photosynthetic Characteristics of Tea Leaves under Low Temperature Stress [J]. Journal of Tea Science, 2024, 44(6): 917-927. |
[6] | ZHAO Jiancheng, NI Huijing, WANG Bo, CAI Chunju, YANG Zhenya. Effect of Bamboo Density on the Physiological Growth and Tea Quality of Tea Plants under the Moso Bamboo Forest [J]. Journal of Tea Science, 2024, 44(6): 928-940. |
[7] | LU Wei, WU Xiaolong, HU Xianchun, HAO Yong, LIU Chunyan. Physiological Response of Tea Plants Inoculated with Arbuscular Mycorrhizal Fungi under Drought Stress [J]. Journal of Tea Science, 2024, 44(5): 718-734. |
[8] | CHEN Shichun, JIANG Hongyan, LIAO Shuran, CHEN Tingxu, NIU Jinzhi, WANG Xiaoqing. Genetic Diversity Analysis of Euproctis pseudoconspersa and Its Bunyavirus (EpBYV) in China [J]. Journal of Tea Science, 2024, 44(5): 793-806. |
[9] | WANG Juan, TU Yiyi, LÜ Wuyun, CHEN Yijia, LI Shipu, WANG Yuchun, CHEN Yanan. Identification of the Pathogen Causing New Twig Wilting on Tea Plants and Screening of Control Chemicals [J]. Journal of Tea Science, 2024, 44(5): 807-815. |
[10] | XIE Chenxin, ZHAO Feng, LIN Yu, CAI Liangsui, LIN Zhi, GUO Li. Advances on Flavor Chemical Characteristics of Solarization Tea [J]. Journal of Tea Science, 2024, 44(4): 554-564. |
[11] | ZHANG Yazhen, ZHONG Sitong, CHEN Zhihui, KONG Xiangrui, SHAN Ruiyang, ZHENG Shiqin, YU Wenquan, CHEN Changsong. Study on the Synthetic Site of Caffeine in Different Etiolated Tea Germplasms [J]. Journal of Tea Science, 2024, 44(4): 575-584. |
[12] | LONG Lu, TANG Dandan, CHEN Wei, TAN Liqiang, CHEN Shengxiang, TANG Qian. Identification and Expression Pattern Analysis of STOP Gene Family in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2024, 44(3): 386-398. |
[13] | ZHANG Shuqing, GUO Jinmei, LI Jianfeng, WU Ling, WANG Xi, ZENG Zhengqun. Effects of Phosphate Solubilizing Bacteriaand Phosphate-solubilizing and Nitrogen-fixing Bacteria on Selenium and Zinc Contents in Selenium-rich Soil and Camellia sinensis Seedlings in Guizhou [J]. Journal of Tea Science, 2024, 44(3): 431-442. |
[14] | DING Fengjiao, YUAN Yuwei, LI Yuanchao, LIN Jinlong, YAN Jiawei, LI Pengchun, JIN Shan. The Aroma Change of the Enzymatic Processing Stage of Beauty Tea in Different Withering Methods [J]. Journal of Tea Science, 2024, 44(3): 469-482. |
[15] | ZHANG Xianglin, LING Zhihui, HU Weixia, XIANG Chunhui, CUI Lidan, XU Wei, XIAO Wenjun. Effects of Different Temperature Hot Air Withering on Withered Leaves and Tea Quality of Black Tea [J]. Journal of Tea Science, 2024, 44(3): 483-492. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|