Journal of Tea Science ›› 2017, Vol. 37 ›› Issue (2): 149-159.
Previous Articles Next Articles
JI Zhifang1, GAN Yudi1, CHEN Changsong2, YANG Dingjun1, SUN Kang1, LI Xinghui1, CHEN Xuan1,*
Received:
2017-02-14
Revised:
2017-02-22
Online:
2017-04-15
Published:
2019-08-22
CLC Number:
JI Zhifang, GAN Yudi, CHEN Changsong, YANG Dingjun, SUN Kang, LI Xinghui, CHEN Xuan. Cloning and Expression Analysis of Phosphoenolpyruvate Transporter Gene CsPPT2 in Tea Plant(Camellia sinensis)[J]. Journal of Tea Science, 2017, 37(2): 149-159.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Fischer K, Kammerer B, Gutensohn M, et al.A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter[J]. Plant Cell, 1997, 9: 453-462. |
[2] | Voll L, Husler R E, Hecker R, et al.The phenotype of the Arabidopsis cue1 mutant is not simply caused by a general restriction of the shikimate pathway[J]. Plant Journal, 2003, 36: 301-317. |
[3] | Kerbarh O, Bulloch E M M, Payne R J, et al. Mechanistic and inhibition studies of chorismate-utilizing enzymes[J]. Biochemical Society Transactions, 2005, 33: 763-766. |
[4] | Li H, Culligan K, Dixon RA, et al.Expression of the functional mature chloroplast triose phosphate translocator in yeast internal membranes and purification of the histidine-tagged proteion by a single metalaffinity chromatography step[J]. Proc Natl Acad Sci, 1993, 90: 2155-2159. |
[5] | Streatfield SJ, Weber A, Kinsman EA, et al.The phosphoenolpyruvate/phosphater translocator is required for phenolic metabolism, plastid cell development and plastid-dependent nuclear gene expression[J]. Plant Cell, 1999, 11: 1609-1621. |
[6] | Knappe S, Flugge UI, Fischer K.Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site[J]. 2003, 131(3): 1178-1190. |
[7] | Knappe S, Löttgert T, Schneider A, et al.Characterization of two functional phosphoenolpyruvate/phosphate translocator (PPT) genes in Arabidopsis-AtPPT1 may be involved in the provision of signals for correct mesophyll development[J]. The Plant Journal, 2003, 36(3): 411-420. |
[8] | Staehr P, Löttgert T, Christmann A, et al.Reticulate leaves and stunted roots are independent phenotypes pointing at opposite roles of the phosphoenolpyruvate/phosphate translocator defective in cue1 in the plastids of both organs[J]. Front Plant Sci, 2014, 5: 126. |
[9] | 杨坤, 吴学龙, 郎春秀, 等. 甘蓝型油菜PEP转运子BnPPT1基因的克隆、序列分析和表达模式[J]. 浙江农业学报, 2011, 23(1): 1-7. |
[10] | 吴学龙. PPT1基因调控植物生长发育的研究及叶脉特异表达增强子的分离应用[D]. 杭州: 浙江大学, 2013: 12-131. |
[11] | 成浩, 李素芳, 陈明, 等. 安吉白茶特异性状的生理生化本质[J]. 茶叶科学, 1999, 19(2): 87-92. |
[12] | 李素芳, 成浩, 虞富莲, 等. 安吉白茶阶段性返白过程中氨基酸的变化[J]. 茶叶科学, 1996, 16(2): 153-154. |
[13] | 李素芳, 陈树尧, 成浩. 茶树阶段性返白现象的初步研究[J]. 中国茶叶, 1994, 16(2): 26-27. |
[14] | 赵真, 陈暄, 王明乐, 等. 茶树磷酸烯醇式丙酮酸转运子基因CsPPT的克隆与表达分析[J]. 茶叶科学, 2015, 35(5): 491-500. |
[15] | 孙美莲, 王云生, 杨冬青, 等. 茶树实时荧光定量PCR分析中内参基因的选择[J]. 植物学报, 2010, 45(5): 579-587. |
[16] | Bagge P, Larsson C.Biosynthesis of aromatic amino acids by highly purified spinach chloroplasts-Compartmentation and regulation of the reactions[J]. Physiol Plantarum, 1986, 68(4): 641-647. |
[17] | Van Der Straeten D, Rodrigues-Pousada RA, Goodman HM, et al. Plant enolase: Gene structure, expression and evolution[J]. Plant Cell, 1991, 3: 719-735. |
[18] | Journet EP, Douce R.Enzymic capacities of purified cauliflower bud plastids for lipidsynthesis and carbohydrate metabolism[J]. Plant Physiol, 1985, 79: 458-467. |
[19] | Schulze-Siebert D, Heineke D, Scharf H, et al.Pyruvate-derived amino acids in spinach chloroplasts: Synthesis and regulation during photosynthetic carbon metabolism[J]. Plant Physiol, 1984, 76: 465-471. |
[20] | Prabhaka V, Löttgert T, Gigolashvili T, et al.Molecular and functional characterization of the plastid-localized Phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana[J]. FEBSLet, 2009, 583: 983-991. |
[21] | Li HM, Culligan K, Dixon RA, et al.CUE1: a mesophyll cell-specific positive regulator of light-controlled gene expression in Arabidopsis[J]. Plant Cell, 1995, 7: 1599-1610. |
[1] | WANG Liubin, HUANG Liyun, TENG Cuiqin, WU Liyun, CHENG Hao, YU Cuiping, WANG Liyuan. Genetic and Phylogenetic Analysis for Germplasm Resources of Camellia sinensis from Wuzhou City [J]. Journal of Tea Science, 2022, 42(5): 601-609. |
[2] | ZHOU Hanchen, YANG Jihong, XU Yujie, WU Qiong, LEI Pandeng. Phylogenetic Analysis of NUDX1 Gene Involved in Geraniol Biosynthesis [J]. Journal of Tea Science, 2022, 42(5): 638-648. |
[3] | ZHAO Dongwei. Nomenclature, Typification, and Natural Distribution of Camellia sinensis var. assamica (Theaceae) [J]. Journal of Tea Science, 2022, 42(4): 491-499. |
[4] | XING Anqi, WU Zichen, XU Xiaohan, SUN Yi, WANG Genmei, WANG Yuhua. Research Advances of Fluoride Accumulation Mechanisms in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 301-315. |
[5] | WANG Tao, WANG Yiqing, QI Siyu, ZHOU Zhe, CHEN Zhidan, SUN Weijiang. Identification and Transcriptional Regulation of CLH Gene Family and Expression Analysis in Albino Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 331-346. |
[6] | LIU Fuhao, FAN Yangen, WANG Yu, MENG Fanyue, ZHANG Lixia. Screening and Identification of Chaperone CsHIPP26.1 Chelating Ions in Tea Cultivar ‘Huangjinya’ [J]. Journal of Tea Science, 2022, 42(2): 179-186. |
[7] | YAN Yuting, LI Yujie, WANG Qian, TANG Meijun, GUO Huawei, LI Hongliang, SUN Liang. The Expression Profiles of Chemosensory Protein 8 Orthologs in Two Closely Related Tea Geometrid Species, Ectropis obliqua Prout and Ectropis grisescens Warren [J]. Journal of Tea Science, 2022, 42(2): 200-210. |
[8] | WANG Pengjie, YANG Jiangfan, ZHANG Xingtan, YE Naixing. Research Advance of Tea Plant Genome and Sequencing Technologies [J]. Journal of Tea Science, 2021, 41(6): 743-752. |
[9] | ZHOU Hanchen, LEI Pandeng. The Functional Identification of Two Alternative Splicing Transcripts of CsNES [J]. Journal of Tea Science, 2021, 41(6): 753-760. |
[10] | YAN Minghui, LIU Ke, WANG Man, LYU Ying, ZHANG Qian. Complete Chloroplast Genome of Camellia sinensis cv. Xinyang 10 and Its Phylogenetic Evolution [J]. Journal of Tea Science, 2021, 41(6): 777-788. |
[11] | LIU Miaomiao, ZANG Liansheng, SUN Xiaoling, ZHOU Zhongshi, YE Meng. Cloning and Expression Analysis of CsWRKY17 Transcription Factor in Tea Plants [J]. Journal of Tea Science, 2021, 41(5): 631-642. |
[12] | JIAO Haizhen, SHAO Chenyu, CHEN Jianjiao, ZHANG Chenyu, CHEN Jiahao, LI Yunfei, SHEN Chengwen. Dynamic Changes of Physiological Responses and Antioxidant Enzyme Activities in Tea Root System under Severe Shading and Removal of Shading [J]. Journal of Tea Science, 2021, 41(5): 695-704. |
[13] | LIN Xinying, WANG Pengjie, CHEN Xuejin, GUO Yongchun, GU Mengya, ZHENG Yucheng, YE Naixing. Identification of LOX Gene Family in Camellia sinensis and Expression Analysis in the Process of White Tea Withering [J]. Journal of Tea Science, 2021, 41(4): 482-496. |
[14] | WANG Yanding, WANG Huan, LI Nana, WANG Lu, HAO Xinyuan, WANG Yuchun, DING Changqing, YANG Yajun, WANG Xinchao, QIAN Wenjun. Identification and Expression Analysis of Glucose-6-hosphate Dehydrogenase Gene (CsG6PDHs) in Camellia sinensis [J]. Journal of Tea Science, 2021, 41(4): 497-510. |
[15] | GU Mengya, WANG Pengjie, CHEN Xuejin, ZHENG Yucheng, GUO Yongchun, LIN Xinying, GAO Ting, HOU Binghao, YE Naixing. Identification of Alcohol Dehydrogenase Gene Family and Their Expression Analysis in the Withering Process of White Tea [J]. Journal of Tea Science, 2021, 41(3): 302-314. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|