Journal of Tea Science ›› 2018, Vol. 38 ›› Issue (2): 133-139.doi: 10.13305/j.cnki.jts.2018.02.003
Previous Articles Next Articles
RAN Wei1,2, ZHANG Jin1,2, ZHANG Xin1,2, LIN Songbo1,2, SUN Xiaoling1,2,*
Received:
2017-12-18
Revised:
2018-01-16
Online:
2018-04-15
Published:
2019-08-28
CLC Number:
RAN Wei, ZHANG Jin, ZHANG Xin, LIN Songbo, SUN Xiaoling. Infestation of Ectropis obliqua Affects the Catechin Metabolism in Tea Plants[J]. Journal of Tea Science, 2018, 38(2): 133-139.
[1] | 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003. |
[2] | Jiang X, Feng K, Yang X.In vitro antifungal activity and mechanism of action of tea polyphenols and tea saponin against Rhizopus stolonifera[J]. J Mol Microbiol Biotechnol, 2015, 35(7): 269-276. |
[3] | Mikulic-Petkovsek M, Schmitzer V, Jakopic J, et al.Phenolic compounds as defence response of pepper fruits to Colletotrichum coccodes [J]. Physiol Mol Plant Pathol, 2013, 84(1): 138-145. |
[4] | Yi S M, Zhu J L, Fu L L, et al.Tea polyphenols inhibit Pseudomonas aeruginosa through damage to the cell membrane[J]. Int J Food Microbiol, 2010, 144(1): 111-117. |
[5] | Aditi S, Kanwar S S, Sud R G, et al.Influence of phenolic compounds of Kangra tea [Camellia sinensis(L) O Kuntze] on bacterial pathogens and indigenous bacterial probiotics of Western Himalayas[J]. Braz J Microbiol. 2013, 44(3): 709-715. |
[6] | Wang Y C, Qian W J, Li N N, et al.Metabolic changes of caffeine in tea pant (Camellia sinensis (L.) O. Kuntze) as defense response to colletotrichum fructicola[J]. Journal of Agricultural & Food Chemistry, 2016, 64(35): 6685-6693. |
[7] | Siranidou E, Kang Z, Buchenauer H.Studies on symptom development, phenolic compounds and morphological defense responses in wheat cultivars differing in resistance to fusarium, head bight[J]. Journal of Phytopathology, 2002, 150(5): 200-208. |
[8] | Czerniewicz P, Sytykiewicz H, Durak R, et al.Role of phenolic compounds during antioxidative responses of winter triticale to aphid and beetle attack[J]. Plant Physiology & Biochemistry Ppb, 2017(118): 529-540. |
[9] | 郑高云. 不同茶树品种对茶尺蠖抗性机制的研究[D]. 合肥: 安徽农业大学, 2008. |
[10] | 金珊. 不同茶树品种抗假眼小绿叶蝉机理研究[D]. 杨凌: 西北农林科技大学, 2012. |
[11] | 高香凤, 李慧玲, 王庆森. 茶树叶片组织结构及次生物质与抗虫性关系研究进展[J]. 茶叶科学技术, 2011(2): 7-11. |
[12] | Mohanpuria P, Kumar V, Yadav S K.Tea caffeine: Metabolism, functions, and reduction strategies[J]. Food Science & Biotechnology, 2010, 19(2): 275-287. |
[13] | Xin Z, Zhang Z, Chen Z, et al.Salicylhydroxamic acid (SHAM) negatively mediates tea herbivore-induced direct and indrect defense against the tea geometrid Ectropis obliqua[J]. J Plant Res, 2014, 127(4): 565-572. |
[14] | Fragoso V, Rothe E, Baldwin I T, et al.Root jasmonic acid synthesis and perception regulate folivore-induced shoot metabolites and increase Nicotiana attenuata resistance[J]. New Phytologist, 2014, 202(4): 1335-1345. |
[15] | Sun X L, Wang G C, Gao Y, et al.Volatiles emitted from tea plants infested by Ectropis obliqua larvae are attractive to conspecifc moths[J]. Journal of Chemical Ecology, 2014, 40(10): 1080-1089. |
[16] | 孙晓玲, 高宇, 陈宗懋. 虫害诱导植物挥发物(HIPVs)对植食性昆虫的行为调控[J]. 应用昆虫学报, 2012, 49(6): 1413-1422. |
[17] | 雷舒, 李喜旺, 孙晓玲, 等. 茶尺蠖为害提高临近茶苗对茶尺蠖幼虫的防御能力[J]. 茶叶科学, 2016, 36(6): 587-593. |
[18] | 张琪, 徐维玲, 李翠芹. HPLC法同时测定茶叶中儿茶素类和咖啡因的含量[J]. 食品工业科技, 2015, 36(4): 53-56. |
[19] | Kessler A, Baldwin IT.Plant responses to insect herbivory: the emerging molecular hypothesis[J]. Annu Rev Plant Biol, 2002, 53(1): 299-328. DOI: 10.1146/annurev.arplant. 53.100301.135207. |
[20] | War AR, Paulraj MG, Hussain B, et al.Effect of plant secondary metabolites on legume pod borer, helicoverpa armigera[J]. Journal of Pest Science, 2013, 86(3): 399-408. |
[21] | Scogings P F, Hjältén J, Skarpe C, et al.Nutrient and secondary metabolite concentrations in a savanna are independently affected by large herbivores and shoot growth rate[J]. Plant Ecology, 2014, 215(1): 73-82. |
[22] | Lattanzio V, Lattanzio V M T, Cardinali A. Role of polyphenols in the resistance mechanisms of plants against fungal pathogens and insects[M]. Imperato, F. Phytochemistry: Advances in research, Research Signpost. Trivandrum, Kerala, India, 2006: 23-67. |
[23] | Wójcicka A.Cereal phenolic compounds as biopesticides of cereal aphids[J]. Polish Journal of Environmental Studies, 2010, 19(6): 1337-1343. |
[24] | 刘泽辉, 赵国虎, 陆敬善, 等. 棉花棉酚含量与抗虫特性的研究[J]. 新疆农业科学, 2008, 45(3): 409-413. |
[25] | Punyasiri P A, Abeysinghe I S, Kumar V, et al.Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways[J]. Archives of Biochemistry & Biophysics, 2004, 431(1): 22-30. |
[26] | Felton G, Donato K, Broadway R, et al.Impact of oxidized plant phenolics on the nutritional quality of dietar protein to a noctuid herbivore, Spodoptera exigua[J]. Journal of Insect Physiology, 1992, 38(4): 277-285 |
[27] | Wang J, Constabel C P.Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria)[J]. Planta, 2004, 220(1): 87-96. |
[28] | Bhonwong A, Stout MJ, Attajarusit J, et al.Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua)[J]. Journal of Chemical Ecology, 2009, 35(1): 28-38. |
[29] | Vanitha S C, Umesha S.Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato[J]. Journal of Phytopathology, 2010, 157(9): 552-557. |
[30] | Bosch M, Berger S, Schaller A, et al.Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sexta[J]. Bmc Plant Biology, 2014, 14(1): 257-272. |
[31] | 朱香镇, 麻巧迎, 张帅, 等. 棉花多酚氧化酶基因GhPPO1的克隆及在棉铃虫取食诱导反应中的作用[J]. 中国农业科学, 2014, 47(16): 3174-3183. |
[32] | Mishra BB, Gautam S.Polyphenol oxidases: biochemical and molecular characterization, distribution, role and its control[J]. Enz Eng, 2016, 5: 141. Doi:10.4172/2329-6674.1000141. |
[33] | Liang X, Chen Q, Lu H, et al.Increased activities of peroxidase and polyphenol oxidase enhance cassava resistance to Tetranychus urticae[J]. Experimental and Applied Acarology, 2017, 71(3), 195-209. |
[34] | Yang ZW, DUAN XN, Jin S, et al.Regurgitant derived from the tea geometrid ectropis obliqua suppresses, wound-induced polyphenol oxidases activity in tea plants[J]. Journal of Chemical Ecology, 2013, 39(6): 744-751. |
[1] | ZHU Qian, SHAO Chenyu, ZHOU Biao, LIU Shuoqian, LIU Zhonghua, TIAN Na. Identification of Tea ICE Gene Family and Cloning and Expression Analysis of CsICE43 under Low-temperature [J]. Journal of Tea Science, 2025, 45(1): 43-60. |
[2] | YIN Minghua, ZHANG Mutong, XU Zilin, OUYANG Qian, WANG Meixuan, LI Wenting. Analysis of the Structural Characteristics and Codon Usage Biase of the Mitochondrial Genome in Tea Cultivar ‘Damianbai’ [J]. Journal of Tea Science, 2025, 45(1): 61-78. |
[3] | XU Wenluan, WEN Xiaoju, JIA Yuxuan, NI Dejiang, WANG Mingle, CHEN Yuqiong. Identification of Pectin Methylesterase and Its Inhibitory Subfamily Genes, and Functional Analysis of CsPME55 in Response to Fluoride Stress in Camellia sinensis [J]. Journal of Tea Science, 2024, 44(6): 869-886. |
[4] | LUO Wei, ZHANG Jiaqi, YANG Ni, HU Zhihang, HAO Jiannan, LIU Hui, TAN Shanshan, ZHUANG Jing. Identification and Tissue Expression Analysis of Sucrose Transporter (SUT) Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2024, 44(4): 585-597. |
[5] | YIN Minghua, ZHANG Jiaxin, LE Yun, HE Fanfan, HUANG Tianhui, ZHANG Mutong. Genomic Characteristics, Codon Preference, and Phylogenetic Analysis of Chloroplasts of Camellia sinensis cv. ‘Damianbai’ [J]. Journal of Tea Science, 2024, 44(3): 411-430. |
[6] | ZHONG Sitong, ZHANG Yazhen, YOU Xiaomei, CHEN Zhihui, KONG Xiangrui, LIN Zhenghe, WU Huini, JIN Shan, CHEN Changsong. Identification of CAB Gene Family and Excavation of Key Genes Related to Leaf Yellowing Variationin Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2024, 44(2): 175-192. |
[7] | HUANG Mengdi, CHEN Lan, SU Qin, HU Jinyu, LIU Guizhi, TAN Yueping, LIU Shuoqian, TIAN Na. The Development of CAPS Molecular Markers for CsAL1, A Gene Associated with Early and Late Spring Tip Emergence in Tea Plants [J]. Journal of Tea Science, 2024, 44(2): 207-218. |
[8] | LI Qinghui, LI Rui, WEN Xiaoju, NI Dejiang, WANG Mingle, CHEN Yuqiong. Selection and Validation of Internal Reference Genes for qRT-PCR Analysis under Fluoride Stress in Camellia sinensis Leaves [J]. Journal of Tea Science, 2024, 44(1): 27-36. |
[9] | WU Shuhua, MAO Kaiquan, CHEN Jiaming, LI Jianlong, XUE Jinghua, ZENG Lanting, YANG Yuhua, GU Dachuan. Study on the Influence of Tea Green Leafhopper Infestation on the Tenderness of Fresh Tea Leaves and the Extraction Rate of Metabolites Related to Oolong Tea Quality [J]. Journal of Tea Science, 2023, 43(6): 806-822. |
[10] | MAO Chun, HE Ji, WEN Xuefeng, WU Chuanmei, YI Chengxi, LIAN Jianhong, GUO Wenmin. Advances in the Application of Metabolomics in the Study of Physiological and Biochemical Metabolism of Tea Plants [Camellia sinensis (L.) O. Kuntze] [J]. Journal of Tea Science, 2023, 43(5): 607-620. |
[11] | LI Congcong, WANG Haoqian, YE Yufan, CHEN Yao, REN Hengze, LI Yuteng, HAO Xinyuan, WANG Xinchao, CAO Hongli, YUE Chuan. Study on the Regulation Roles of Plant Hormones on the Growth and Development of Tea Shoots in Spring [J]. Journal of Tea Science, 2023, 43(3): 335-348. |
[12] | ZHOU Jihong, CHEN Wei, DING Lejia, WANG Yuefei. Regulatory Effect and Mechanism of EGCG on Metabolic Disorders in High-fructose Diet Mice [J]. Journal of Tea Science, 2023, 43(3): 399-410. |
[13] | MENG Rongjun, CHEN Liang, XU Yuan, LIN Wei, ZHOU Qiwei, XIE Yilin, LAI Dingqing, LAI Jiaye. Genetic Diversity Analysis of Tea Genetic Resources in Sanjiang, Guangxi [J]. Journal of Tea Science, 2023, 43(2): 147-158. |
[14] | CHEN Zhenyan, ZHANG Xiangqin, CHEN Lan, XIE Siyi, LIU Shuoqian, TIAN Na. Identification and Expression Pattern Analysis of NUDIX Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2023, 43(2): 159-172. |
[15] | HU Zhihang, QIN Zhiyuan, LI Jingwen, YANG Ni, CHEN Yi, LI Tong, ZHUANG Jing. Identification of the Light-harvesting Chlorophyll-protein Complex Gene CsLhcb2 and Its Response to Low Temperature in Tea Plants [J]. Journal of Tea Science, 2023, 43(2): 183-193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|