Journal of Tea Science ›› 2022, Vol. 42 ›› Issue (4): 463-476.doi: 10.13305/j.cnki.jts.2022.04.005
• Research Paper • Previous Articles Next Articles
WANG Yuyuan1, LIU Renjian1, LIU Shaoqun1, SHU Canwei2, SUN Binmei1, ZHENG Peng1,*
Received:
2021-12-27
Revised:
2022-01-19
Online:
2022-08-15
Published:
2022-08-23
CLC Number:
WANG Yuyuan, LIU Renjian, LIU Shaoqun, SHU Canwei, SUN Binmei, ZHENG Peng. Expression Analysis and Functional Identification of CsTT2 R2R3-MYB Transcription Factor in Tea Plants[J]. Journal of Tea Science, 2022, 42(4): 463-476.
[1] Ming T, Bartholomew B.Theaceae[J]. Flora China, 2007, 12: 366-478. [2] Zhao M, Zhang N, Gao T, et al.Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants[J]. New Phytol, 2020, 226(2): 362-372. [3] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003. Wan X C.Biochemistry of tea: the third edition [M]. 3rd ed. Beijing: China Agriculture press, 2003. [4] Zhao M, Yu Y, Sun L, et al.GCG inhibits SARS-CoV-2 replication by disrupting the liquid phase condensation of its nucleocapsid protein[J]. Nature Communications, 2021, 12(1): 2114.doi: 10.1038/s41467-021-22297-8. [5] Xiong L G, Chen Y J, Tong J W, et al.Epigallocatechin-3-gallate promotes healthy lifespan through mitohormesis during early-to-mid adulthood in [6] Yuan H, Li Y, Ling F, et al.The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats[J]. Aging cell, 2020, 19(9): e13199. doi: 10.1111/acel.13199. [7] Lwxa B, Shang C, Tsza B, et al.Green tea derivative epigallocatechin-3-gallate (EGCG) confers protection against ionizing radiation-induced intestinal epithelial cell death both [8] Zhang Z, Zhang X, Bi K, et al.Potential protective mechanisms of green tea polyphenol EGCG against COVID-19[J]. Trends in Food Science & Technology, 2021, 114: 11-24. [9] Zhao J, Blayney A, Liu X, et al.EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction[J]. Nature Communications, 2021, 12(1): 986. doi: 10.1038/s41467-021-21258-5. [10] Bernier L P, York E M, Kamyabi A, et al.Microglial metabolic flexibility supports immune surveillance of the brain parenchyma[J]. Nat Commun, 2020, 11(1): 1559. doi: 10.1038/s41467-020-15267-z. [11] Liu Z S, Cai H, Xue W, et al.G3BP1 promotes DNA binding and activation of cGAS[J]. Nat Immunol, 2019, 20(1): 18-28. [12] Yang C S, Hong J.Prevention of chronic diseases by tea: possible mechanisms and human relevance[J]. Annual Review of Nutrition, 2013, 33: 161-181. [13] 夏涛, 高丽萍. 类黄酮及茶儿茶素生物合成途径及其调控研究进展[J]. 中国农业科学, 2009, 42(8): 2899-2908. Xia T, Gao L P.Research progress on biosynthesis pathway and regulation of flavonoids and catechins[J]. Scientia Agricultura Sinica, 2009, 42(8): 2899-2908. [14] Weisshaar B, Jenkins G I.Phenylpropanoid biosynthesis and its regulation[J]. Current Opinion in Plant Biology, 1998, 1(3): 251-257. [15] Furukawa T, Eshima A, Koiya M, et al.Coordinate expression of genes involved in catechin biosynthesis in [16] 夏涛, 高丽萍, 刘亚军, 等. 茶树酯型儿茶素生物合成及水解途径研究进展[J]. 中国农业科学, 2013, 46(11): 2307-2320. Xia T, Gao L P, Liu Y J, et al.Advances in biosynthesis and hydrolysis of catechins from tea tree[J]. Scientia Agricultura Sinica, 2013, 46(11): 2307-2320. [17] 宛晓春. 茶树次生代谢[M]. 北京: 科学出版社, 2015. Wan X C.Secondary metabolism of tea plant [M]. Beijing: Science Press, 2015. [18] 陆建良, 林晨, 骆颖颖, 等. 茶树重要功能基因克隆研究进展[J]. 茶叶科学, 2007, 27(2): 95-103. Lu J L, Lin C, Luo Y Y, et al.Advances in cloning of important functional genes from [19] Stafford H A.Flavonoid metabolism pathway to proanthocyanindins (condensed tannins), flavan-3-ols, and unsubstituted flavans [M]. New York: CRC Press, 1990. [20] Stafford H A, Lester H H.The conversion of ( [21] Punyasiri P, Abeysinghe I, Kumar V, et al.Flavonoid biosynthesis in the tea plant [22] Niemetz R, Gross G G.Enzymology of gallotannin and ellagitannin biosynthesis[J]. Phytochemistry, 2005, 66(17): 2001-2011. [23] Gross G G.From lignins to tannins: forty years of enzyme studies on the biosynthesis of phenolic compounds[J]. Phytochemistry, 2008, 69(18): 3018-3031. [24] Liu Y, Gao L, Liu L, et al.Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant ( [25] Zhong K, Zhao S Y, Jönsson L J, et al.Enzymatic conversion of epigallocatechin gallate to epigallocatechin with an inducible hydrolase from [26] Wei C, Hua Y, Wang S, et al.Draft genome sequence of [27] Luo Y, Yu S, Li J, et al.Molecular characterization of WRKY transcription factors that act as negative regulators of O-Methylated catechin biosynthesis in tea plants ( [28] Wang P, Zhang L, Jiang X, et al.Evolutionary and functional characterization of leucoanthocyanidin reductases from [29] 牛义岭, 姜秀明. 植物转录因子MYB基因家族的研究进展[J]. 分子植物育种, 2016, 14(8): 2050-2059. Niu Y L, Jiang X M.Research progress of plant transcription factor MYB gene family[J]. Molecular Plant Breeding, 2016, 14(8): 2050-2059. [30] Martin C, Paz-Ares J.MYB transcription factors in plants[J]. Trends in Genetics, 1997, 13(2): 67-73. [31] Verdonk J C, Haring M A, Tunen A J, et al.ODORANT1 regulates fragrance biosynthesis in [32] Bomal C, Bedon F, Caron S, et al.Involvement of [33] Schaart J G, Dubos C, Romero De La Fuente I, et al. Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry[J]. The New Phytologist, 2013, 197(2): 454-467. [34] An X H, Tian Y, Chen K Q, et al.MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples[J]. Plant Cell Physiol, 2015, 56(4): 650-662. [35] Tian J, Zhang J, Han Z Y, et al.McMYB12 transcription factors co-regulate proanthocyanidin and anthocyanin biosynthesis in [36] James A M, Ma D, Mellway R, et al.Poplar MYB115 and MYB134 transcription factors regulate proanthocyanidin synthesis and structure[J]. Plant Physiology, 2017, 174(1): 154-171. [37] Wang N, Qu C, Jiang S, et al.The proanthocyanidin-specific transcription factor MdMYBPA1 initiates anthocyanin synthesis under low temperature conditions in red-fleshed apple[J]. The Plant J, 2018, 96(1): 39-55. [38] Xu W, Dubos C, Lepiniec L.Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J]. Trends in Plant Science, 2015, 20(3): 176-185. [39] Terrier N, Torregrosa L, Ageorges A, et al.Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway[J]. Plant Physiol, 2009, 149(2): 1028-1041. [40] Gesell A, Yoshida K, Tran L T, et al.Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134[J]. Planta, 2014, 240(3): 497-511. [41] Mellway R D, Tran L T, Prouse M B et al. The wound-, pathogen-, and ultraviolet B-responsive [42] Stracke R, Werber M, Weisshaar B.The R2R3-MYB gene family in [43] Liu R, Wang Y, Tang S, et al.Genome-wide identification of the tea plant bHLH transcription factor family and discovery of candidate regulators of trichome formation[J]. Sci Rep, 2021, 11(1): 10764. doi: 10.21203/rs.3.rs-148784/v1. [44] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) method[J]. Methods, 2001, 25(4): 402-408. [45] Chen C, Chen H, Zhang Y, et al.TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8): 1194-1202. [46] Dubos C, Stracke R, Grotewold E, et al.MYB transcription factors in [47] Stracke R, Ishihara H, Huep G, et al.Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the [48] Gonzalez A, Zhao M, Leavitt J M, et al.Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in [49] Lepiniec L, Debeaujon I, Routaboul J M, et al.Genetics and biochemistry of seed flavonoids[J]. Annu Rev Plant Biol, 2006, 57: 405-430. [50] Zhong R, Lee C, Zhou J, et al.A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in [51] Zhou J, Lee C, Zhong R, et al.MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in [52] Sun B, Zhu Z, Cao P, et al.Purple foliage coloration in tea ( [53] Wang X C, Wu J, Guan M L, et al. [54] Ma D, Constabel C P.MYB repressors as regulators of phenylpropanoid metabolism in plants[J]. Trends Plant Sci, 2019, 24(3): 275-289. [55] Agarwal M, Hao Y, Kapoor A, et al.A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. J Biol Chem, 2006, 281(49): 37636-37645. [56] Kang Y H, Kirik V, Hulskamp M, et al.The [57] Jiang X, Huang K, Zheng G, et al.CsMYB5a and CsMYB5e from [58] Wang P, Ma G, Zhang L, et al.A sucrose-induced MYB (SIMYB) transcription factor promoting proanthocyanidin accumulation in the tea plant ( |
[1] | DONG Yuan, ZHANG Yongheng, XIAO Yezi, YU Youben. Cloning of BZR1 Gene Family in Tea Plants and Molecular Mechanism Study of CsBZR1-5 Response to Drought Stress [J]. Journal of Tea Science, 2025, 45(1): 15-28. |
[2] | YANG Nan, LI Zhuan, LIU Meichen, MA Junjie, SHI Yuntao, WEI Xiangning, LIN Yangshun, MAO Yuyuan, GAO Shuilian. Studies on the Regulation of EGCG Biosynthesis in Tea Plants by Potassium Nutrition [J]. Journal of Tea Science, 2024, 44(6): 887-900. |
[3] | ZHAO Qian, LIU Qian, CAI-HE Jiayi, HE Jieqi, FANG Yunya, LIU Yuxin, CHEN Chao, ZHENG Yaodong, ZHANG Tianjing, YU Wenjuan, YANG Guang. Effects of Combined Drought and Low-temperature Stress on Photosynthetic Physiological Characteristics of Tea Plants and Simulation Prediction [J]. Journal of Tea Science, 2024, 44(6): 901-916. |
[4] | LIU Xiaolu, ZHU Yalan, YU Min, GAI Xinyue, FAN Yangen, SUN Ping, HUANG Xiaoqin. Changes in Cell Wall Structure and Photosynthetic Characteristics of Tea Leaves under Low Temperature Stress [J]. Journal of Tea Science, 2024, 44(6): 917-927. |
[5] | ZHAO Jiancheng, NI Huijing, WANG Bo, CAI Chunju, YANG Zhenya. Effect of Bamboo Density on the Physiological Growth and Tea Quality of Tea Plants under the Moso Bamboo Forest [J]. Journal of Tea Science, 2024, 44(6): 928-940. |
[6] | LU Wei, WU Xiaolong, HU Xianchun, HAO Yong, LIU Chunyan. Physiological Response of Tea Plants Inoculated with Arbuscular Mycorrhizal Fungi under Drought Stress [J]. Journal of Tea Science, 2024, 44(5): 718-734. |
[7] | CHEN Shichun, JIANG Hongyan, LIAO Shuran, CHEN Tingxu, NIU Jinzhi, WANG Xiaoqing. Genetic Diversity Analysis of Euproctis pseudoconspersa and Its Bunyavirus (EpBYV) in China [J]. Journal of Tea Science, 2024, 44(5): 793-806. |
[8] | WANG Juan, TU Yiyi, LÜ Wuyun, CHEN Yijia, LI Shipu, WANG Yuchun, CHEN Yanan. Identification of the Pathogen Causing New Twig Wilting on Tea Plants and Screening of Control Chemicals [J]. Journal of Tea Science, 2024, 44(5): 807-815. |
[9] | ZHANG Yazhen, ZHONG Sitong, CHEN Zhihui, KONG Xiangrui, SHAN Ruiyang, ZHENG Shiqin, YU Wenquan, CHEN Changsong. Study on the Synthetic Site of Caffeine in Different Etiolated Tea Germplasms [J]. Journal of Tea Science, 2024, 44(4): 575-584. |
[10] | LONG Lu, TANG Dandan, CHEN Wei, TAN Liqiang, CHEN Shengxiang, TANG Qian. Identification and Expression Pattern Analysis of STOP Gene Family in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2024, 44(3): 386-398. |
[11] | ZHANG Shuqing, GUO Jinmei, LI Jianfeng, WU Ling, WANG Xi, ZENG Zhengqun. Effects of Phosphate Solubilizing Bacteriaand Phosphate-solubilizing and Nitrogen-fixing Bacteria on Selenium and Zinc Contents in Selenium-rich Soil and Camellia sinensis Seedlings in Guizhou [J]. Journal of Tea Science, 2024, 44(3): 431-442. |
[12] | QIN Yujie, GUO Mingming, CHEN Yongjing, ZHOU Li. Determination of Afidopyropen and Metabolite M440I007 in Tea Tissues by Modified QuEChERS Coupled with Ultra-high Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Journal of Tea Science, 2024, 44(3): 515-525. |
[13] | CUI Qingmei, LIANG Jinbo, MA Huijie, HU Shuangling, CHEN Qinghua, WU Liyun, HE Mengdi, WANG Liubin, TAN Licai, ZHANG Qiang, WANG Liyuan. Genetic Diversity and Population Structure Relationship Analysis of Wild Tea Germplasm Resources in Badong County, Hubei Province [J]. Journal of Tea Science, 2024, 44(2): 193-206. |
[14] | SONG Bo, JIA Peining, YE Wenqi, WU Jun, SUN Weijiang, XUE Zhihui. Physiological Differences and Expression Analysis of Wax Synthesis Related Gene WSD1 in Tea Roots Treated with Fluorine [J]. Journal of Tea Science, 2024, 44(2): 219-230. |
[15] | WANG Liubin, WU Liyun, WEI Kang, WANG Liyuan. QTL Mapping and Candidate Gene Analysis for Timing of Spring Bud Flush in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2023, 43(6): 747-756. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|