Journal of Tea Science ›› 2022, Vol. 42 ›› Issue (4): 549-560.doi: 10.13305/j.cnki.jts.2022.04.009
• Research Paper • Previous Articles Next Articles
FANG Mengrui1, LÜ Jun1,*, RUAN Jianyun2, BIAN Lei2, WU Chuanyu3, YAO Qing1
Received:
2022-05-09
Revised:
2022-06-09
Online:
2022-08-15
Published:
2022-08-23
CLC Number:
FANG Mengrui, LÜ Jun, RUAN Jianyun, BIAN Lei, WU Chuanyu, YAO Qing. Tea Buds Detection Model Using Improved YOLOv4-tiny[J]. Journal of Tea Science, 2022, 42(4): 549-560.
[1] 张浩, 陈勇, 汪巍, 等. 基于主动计算机视觉的茶叶采摘定位技术[J]. 农业机械学报, 2014, 45(9): 61-65. Zhang H, Chen Y, Wang W, et al.Positioning method for tea picking using active computer vision[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(9): 61-65. [2] Chen Y T, Chen S F.Localizing plucking points of tea leaves using deep convolutional neural networks[J]. Computers and Electronics in Agriculture, 2020, 171: 105298. doi: 10.1016/j.compag.2020.105298. [3] 张金炎, 曹成茂, 李文宝, 等. 基于多特征融合的茶叶鲜叶等级识别的方法研究[J]. 安徽农业大学学报, 2021, 48(3): 480-487. Zhang J Y, Cao C M, Li W B, et al.Study on the method of recognition of fresh leaf grade of tea based on multi-featured fusion[J]. Journal of Anhui Agricultural University, 2021, 48(3): 480-487. [4] Yuwana R S, Fauziah F, Heryana A, et al.Data augmentation using adversarial networks for tea diseases detection[J]. Journal Elektronika dan Telekomunikasi, 2020, 20(1): 29-35. [5] 刘自强, 周铁军, 傅冬, 等. 基于颜色和形状的鲜茶叶图像特征提取及在茶树品种识别中的应用[J]. 江苏农业科学, 2021, 49(12): 168-172. Liu Z Q, Zhou T J, Fu D, et al.Study on image feature extraction of fresh tea based on color and shape and its application in tea variety recognition[J]. Jiangsu Agricultural Sciences, 2021, 49(12): 168-172. [6] 毛腾跃, 张雯娟, 帖军. 基于显著性检测和Grabcut算法的茶叶嫩芽图像分割[J]. 中南民族大学学报(自然科学版), 2021, 40(1): 80-88. Mao T Y, Zhang W J, Tie J.Image segmentation of tea buds based on salient object detection and Grabcut[J]. Journal of South-Central Minzu University (Natural Science Edition), 2021, 40(1): 80-88. [7] 姜苗苗, 问美倩, 周宇, 等. 基于颜色因子与图像融合的茶叶嫩芽检测方法[J]. 农业装备与车辆工程, 2020, 58(10): 44-47. Jiang M M, Wen M Q, Zhou Y, et al.Tea bud detection method based on color factor and image fusion[J]. Agricultural Equipment & Vehicle Engineering, 2020, 58(10): 44-47. [8] Wang T, Zhang K M, Zhang W, et al.Tea picking point detection and location based on Mask-RCNN[J]. Information Processing in Agriculture, 2021. doi: 10.1016/j.inpa.2021.12.004. [9] Iswanto B H, Alma A .Texture histogram features for tea leaf identification using visible digital camera[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1098(3): 1098-1104. [10] 龙樟, 姜倩, 王健, 等. 茶叶嫩芽视觉识别与采摘点定位方法研究[J]. 传感器与微系统, 2022, 41(2): 39-41. Long Z, Jiang Q, Wang J, et al.Research on method of tea flushes vision recognition and picking point localization[J]. Transducer and Microsystem Technologies, 2022, 41(2): 39-41. [11] 吴雪梅, 张富贵, 吕敬堂. 基于图像颜色信息的茶叶嫩叶识别方法研究[J]. 茶叶科学, 2013, 33(6): 584-589. Wu X M, Zhang F G, Lv J T.Research on recognition of tea tender leaf based on image color information[J]. Journal of Tea Science, 2013, 33(6): 584-589. [12] 汪建. 结合颜色和区域生长的茶叶图像分割算法研究[J]. 茶叶科学, 2011, 31(1): 72-77. Wang J.Segmentation algorithm of tea combined with the color and region growing[J]. Journal of Tea Science, 2011, 31(1): 72-77. [13] Zhang L, Zou L, Wu C, et al.Method of famous tea sprout identification and segmentation based on improved watershed algorithm[J]. Computers and Electronics in Agriculture, 2021, 184(1): 106108. doi: 10.1016/j.compag.2021.106108. [14] 王子钰, 赵怡巍, 刘振宇. 基于SSD算法的茶叶嫩芽检测研究[J]. 微处理机, 2020, 41(4): 42-48. Wang Z Y, Zhao Y W, Liu Z Y.Research on tea buds detection based on SSD algorithm[J]. Microprocessors, 2020, 41(4): 42-48. [15] 孙肖肖, 牟少敏, 许永玉, 等. 基于深度学习的复杂背景下茶叶嫩芽检测算法[J]. 河北大学学报(自然科学版), 2019, 39(2): 211-216. Sun X X, Mu S M, Xu Y Y, et al.Detection algorithm of tea tender buds under complex background based on deep learning[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(2): 211-216. [16] Yang H, Chen L, Chen M, et al.Tender tea shoots recognition and positioning for picking robot using improved YOLO-V3 model[J]. IEEE Access, 2019: 180998-181011. [17] Li Y T, He L Y, Jia J M, et al.In-field tea shoot detection and 3D localization using an RGB-D camera[J]. Computers and Electronics in Agriculture, 2021, 185: 106149. doi: 10.1016/j.compag.2021.106149. [18] 吕军, 方梦瑞, 姚青, 等. 基于区域亮度自适应校正的茶叶嫩芽检测模型[J]. 农业工程学报, 2021, 37(22): 278-285. Lyu J, Fang M R, Yao Q, et al.Detection model for tea buds based on region brightness adaptive correction[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 278-285. [19] Karunasena G, Priyankara H.Tea bud leaf identification by using machine learning and image processing techniques[J]. International Journal of Scientific & Engineering Research, 2020, 11(8): 624-628. [20] Li X, Pan J, Xie F, et al.Fast and accurate green pepper detection in complex backgrounds via an improved Yolov4-tiny model[J]. Computers and Electronics in Agriculture, 2021, 191: 106503. [21] Jiang Z, Zhao L, Li S, et al.Real-time object detection method based on improved YOLOv4-tiny[J]. arXiv preprint, 2020, arXiv: 2011.04244. doi: 10.48550/arXiv.2011.04244. [22] Misra D.Mish: A self regularized non-monotonic activation function[J]. arXiv preprint, 2019, arXiv: 1908.08681. doi: 10.48550/arXiv.1908.08681. [23] Glorot X, Bordes A, Bengio Y.Deep sparse rectifier neural networks[C]//Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2011: 315-323. [24] Zheng Z, Wang P, Liu W, et al.Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(7): 12993-13000. [25] Lin T Y, Dollar P, Girshick R, et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125. [26] Woo S, Park J, Lee J Y, et al.CBAM: convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-19. [27] Guo C, Fan B, Zhang Q, et al.AugFPN: improving multi-scale feature learning for object detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 12595-12604. [28] Syazwany N S, Nam J H, Lee S C.MM-BiFPN: multi-modality fusion network with Bi-FPN for MRI brain tumor segmentation[J]. IEEE Access, 2021: 160708-160720. [29] 王金鹏, 高凯, 姜洪喆, 等. 基于改进的轻量化卷积神经网络火龙果检测方法[J]. 农业工程学报, 2020, 36(20): 218-225. Wang J P, Gao K, Jiang H Z, et al.Method for detecting dragon fruit based on improved lightweight convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 218-225. [30] Everingham M, Van Gool L, Williams C K I, et al. The pascal visual object classes challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. [31] 林森, 刘美怡, 陶志勇. 采用注意力机制与改进YOLOv5的水下珍品检测[J]. 农业工程学报, 2021, 37(18): 307-314. Lin S, Liu M Y, Tao Z Y.Detection of underwater treasures using attention mechanism and improved YOLOv5[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 307-314. [32] Redmon J, Farhadi A. YOLOv3: an incremental improvement [J]. arXiv preprint, 2018, arXiv: 1804.02767. doi.org/10.48550/arXiv.1804.02767. [33] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: optimal speed and accuracy of object detection[J]. arXiv preprint, 2020, arXiv: 2004.10934. doi: 10.48550/arXiv.2004.10934. [34] Yap M H, Hachiuma R, Alavi A, et al.Deep learning in diabetic foot ulcers detection: a comprehensive evaluation[J]. Computers in Biology and Medicine, 2021, 135: 104596. doi: 10.1016/j.compbiomed.2021.104596. [35] Selvaraju R R, Cogswell M, Das A, et al.Grad-cam: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 618-626. |
[1] | GAO Jianjian, CHEN Dan, PENG Jiakun, WU Wenliang, CAI Liangsui, CAI Yawei, TIAN Jun, WAN Yunlong, SUN Weijiang, HUANG Yan, WANG Zhe, LIN Zhi, DAI Weidong. Comparison on Chemical Components of Yunnan and Fuding White Tea Based on Metabolomics Approach [J]. Journal of Tea Science, 2022, 42(5): 623-637. |
[2] | CHEN Qiyu, MA Jianqiang, CHEN Jiedan, CHEN Liang. Genetic Diversity of Mature Leaves of Tea Germplasms Based on Image Features [J]. Journal of Tea Science, 2022, 42(5): 649-660. |
[3] | LI Yanchun, WANG Hang, LI Zhaowei, YE Jing, WANG Yixiang. Ameliorative Effect of Several Measures on Soil Physicochemical Properties and Microbial Community Structures in Acidified Tea Gardens [J]. Journal of Tea Science, 2022, 42(5): 661-671. |
[4] | SUN Yue, WU Jun, WEI Chaoling, LIU Mengyue, GAO Chenxi, ZHANG Lingzhi, CAO Shixian, YU Shuntian, JIN Shan, SUN Weijiang. Screening of Tea Germplasm Resistant to Matsumurasca onukii and Dendrothrips minowai Priesner and Analysis of Resistance-related Factors [J]. Journal of Tea Science, 2022, 42(5): 689-704. |
[5] | CHEN Yuhong, GAO Ying, HAN Zhen, YIN Junfeng. Analysis of the Saponin Contents and Composition in Tea Seeds of Different Germplasms [J]. Journal of Tea Science, 2022, 42(5): 705-716. |
[6] | CHEN Hui, YANG Liling, CHEN Jinhua, HUANG Jian'an, GONG Yushun, LI Shi. Effect of Temperature-controlled Pile-fermentation on Aroma Quality of Primary Dark Tea [J]. Journal of Tea Science, 2022, 42(5): 717-730. |
[7] | LI Zheng, LIU Ding, HUO Zenghui, CHEN Fuqiao. Analysis on the Competitiveness and Complementarity of Tea Trade between China and RCEP Members [J]. Journal of Tea Science, 2022, 42(5): 740-752. |
[8] | WANG Yuyuan, LIU Renjian, LIU Shaoqun, SHU Canwei, SUN Binmei, ZHENG Peng. Expression Analysis and Functional Identification of CsTT2 R2R3-MYB Transcription Factor in Tea Plants [J]. Journal of Tea Science, 2022, 42(4): 463-476. |
[9] | LI Jing, LIN Cairong, HUANG Yan, DENG Xuming, WANG Yiqing, SUN Weijang. Effects of Tea Polyphenols on Agrobacterium-mediated Plant Genetic Transformation System [J]. Journal of Tea Science, 2022, 42(4): 477-490. |
[10] | ZHAO Dongwei. Nomenclature, Typification, and Natural Distribution of Camellia sinensis var. assamica (Theaceae) [J]. Journal of Tea Science, 2022, 42(4): 491-499. |
[11] | LIU Jianjun, ZHANG Jinyu, PENG Ye, LIU Xiaobo, YANG Yun, HUANG Tao, WEN Beibei, LI Meifeng. Effects of Light Waves on the Aroma Substances of Fresh Tea Leaves in Summer and Autumn During Spreading and the Quality of Final Green Tea [J]. Journal of Tea Science, 2022, 42(4): 500-514. |
[12] | ZHANG Yinggen, XIANG Lihui, CHEN Lin, LIN Qingxia, SONG Zhenshuo, WANG Lili. Effects of Air Conditions Preset for Withering on Flavor Quality and Chemical Profiles of White Teas [J]. Journal of Tea Science, 2022, 42(4): 525-536. |
[13] | LI Ziqiang, YANG Mei, ZHANG Xinzhong, LUO Fengjian, ZHOU Li, LOU Zhengyun, SUN Hezhi, WANG Xinru, CHEN Zongmao. Residue Determination of Sixteen Pesticides in Green Tea by UPLC-MS/MS [J]. Journal of Tea Science, 2022, 42(4): 537-548. |
[14] | SUN Ying, CHEN Xin, YANG Hua, YING Jian, SHAO Danqing, LÜ Xiaohua, XIAO Jie, CHEN Zhixiong, LI Song, QIN Junjie, ZHENG Bin, GAO Jianshe. Clinical Trial on the Effect of Drinking Jinhua Xiangyuan Tea for 3 Months on the Improvement of Glucose and Lipid Metabolism in A Small Sample Hyperlipidemia Population [J]. Journal of Tea Science, 2022, 42(4): 561-576. |
[15] | TIAN Haixia, WEI Zhenzhen, MA Yue, LI Song, DAI Shen, LIU Haixin, HAO Binxiu. Study on the Application of Three-dimensional Vial Fermentation Technology of Puer Tea [J]. Journal of Tea Science, 2022, 42(4): 577-587. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|