Journal of Tea Science ›› 2023, Vol. 43 ›› Issue (6): 747-756.doi: 10.13305/j.cnki.jts.2023.06.012
• Research Paper • Previous Articles Next Articles
WANG Liubin, WU Liyun, WEI Kang, WANG Liyuan*
Received:
2023-08-30
Revised:
2023-10-06
Online:
2023-12-15
Published:
2024-01-08
CLC Number:
WANG Liubin, WU Liyun, WEI Kang, WANG Liyuan. QTL Mapping and Candidate Gene Analysis for Timing of Spring Bud Flush in Tea Plants (Camellia sinensis)[J]. Journal of Tea Science, 2023, 43(6): 747-756.
[1] | Hartley L, Flowers N, Holmes J, et al. Green and black tea for the primary prevention of cardiovascular disease [J]. Cochrane Database of Systematic Reviews, 2013, 2013(6): Cd009934. doi: 10.1002/14651858.CD009934.pub2. |
[2] | Boyle N B, Billington J, Lawton C, et al.A combination of green tea, rhodiola, magnesium and B vitamins modulates brain activity and protects against the effects of induced social stress in healthy volunteers[J]. Nutritional Neuroscience, 2022, 25(9): 1845-1859. |
[3] | Keller A, Wallace T C.Tea intake and cardiovascular disease: an umbrella review[J]. Annals of Medicine, 2021, 53(1): 929-944. |
[4] | Wang X C, Hao X Y, Ma C L, et al.Identification of differential gene expression profiles between winter dormant and sprouting axillary buds in tea plant (Camellia sinensis) by suppression subtractive hybridization[J]. Tree Genetics & Genomes, 2014, 10(5): 1149-1159. |
[5] | Hao X Y, Yang Y J, Yue C, et al.Comprehensive transcriptome analyses reveal differential gene expression profiles of Camellia sinensis axillary buds at para-, endo-, ecodormancy, and bud flush stages[J]. Frontiers in Plant Science, 2017, 8: 553. doi: 10.3389/fpls.2017.00553. |
[6] | Tan L Q, Wang L B, Zhou B, et al.Comparative transcriptional analysis reveled genes related to short winter-dormancy regulation in Camellia sinensis[J]. Plant Growth Regulation, 2020, 92: 401-415. |
[7] | Liu Y J, Chen S, Chen J D, et al.Comprehensive analysis and expression profiles of the AP2/ERF gene family during spring bud break in tea plant (Camellia sinensis)[J]. BMC Plant Biology, 2023, 23(1): 206. doi: 10.1186/s12870-023-04221-y. |
[8] | 刘贤德, 张国范. 运用拟测交策略构建遗传图谱的理论依据及研究进展[J]. 海洋科学, 2008, 32(10): 81-85.Liu X D, Zhang G F.The theory base of constructing genetic map using “pseudo-testcross” mapping strategy and its development[J]. Marine Sciences, 2008, 32(10): 81-85. |
[9] | Tan L Q, Wang L Y, Xu L Y, et al.SSR-based genetic mapping and QTL analysis for timing of spring bud flush, young shoot color, and mature leaf size in tea plant (Camellia sinensis)[J]. Tree Genetics & Genomes, 2016, 12(3): 52. doi: 10.1007/s11295-016-1008-9. |
[10] | Tan L Q, Cui D, Wang L B, et al. Genetic analysis of the early bud flush trait of tea plants (Camellia sinensis) in the cultivar ‘Emei Wenchun’ and its open-pollinated offspring [J]. Horticulture Research, 2022, 21(9): uhac086. doi: 10.1093/hr/uhac086. |
[11] | Xu L Y, Wang L Y, Wei K, et al.High-density SNP linkage map construction and QTL mapping for flavonoid-related traits in a tea plant (Camellia sinensis) using 2b-RAD sequencing[J]. BMC Genomics, 2018, 19(1): 955. doi: 10.1186/s12864-018-5291-8. |
[12] | Wei K, Wang X C, Hao X Y, et al.Development of a genome-wide 200K SNP array and its application for high-density genetic mapping and origin analysis of Camellia sinensis[J]. Plant Biotechnology Journal, 2022, 20(3): 414-416. |
[13] | Ooijen J W.MapQTL®6. Software for the mapping of quantitative trait loci in experimental populations[M]. Wagenigen: Kyazma BV, 2009. |
[14] | Zhang L Y, Meng L, Wu W C, et al.GACD: integrated software for genetic analysis in clonal F1 and double cross populations[J]. Journal of Heredity, 2015, 106(6): 741-744. |
[15] | Voorrips R E.MapChart: software for the graphical presentation of linkage maps and QTLs[J]. Journal Heredity, 2002, 93(1): 77-78. |
[16] | Chen J D, He W Z, Chen S, et al.TeaGVD: a comprehensive database of genomic variations for uncovering the genetic architecture of metabolic traits in tea plants[J]. Frontiers in Plant Science, 2022, 13: 1056891. doi: 10.3389/fpls.2022.1056891. |
[17] | Xia E H, Tong W, Hou Y, et al.The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation[J]. Molecular Plant, 2020, 13(7): 1013-1026. |
[18] | 王新超, 王璐, 郝心愿, 等. 茶树遗传育种研究“十三五”进展及“十四五”发展方向[J]. 中国茶叶, 2021, 43(9): 50-57.Wang X C, Wang L, Hao X Y, et al.Tea genetics and breeding progress during the 13th five-year plan period and development direction in the 14th five-year plan period[J]. China Tea, 2021, 43(9): 50-57. |
[19] | Wang R J, Gao X F, Yang J, et al.Genome-wide association study to identify favorable SNP allelic variations and candidate genes that control the timing of spring bud flush of tea (Camellia sinensis) using SLAF-seq[J]. Journal of Agricultural and Food Chemistry, 2019, 67(37): 10380-10391. |
[20] | You Q, Sood S, Luo Z L, et al.Identifying genomic regions controlling ratoon stunting disease resistance in sugarcane (Saccharum spp.) clonal F1 population[J]. The Crop Journal, 2021, 9(5): 1070-1078. |
[21] | 陈艳梅. 红掌高密度SNP遗传连锁图谱构建及疫病抗性佛焰苞花色性状QTL定位[D]. 海口: 海南大学, 2020.Chen Y M.High SNP density genetic map construction and QTLs mapping for identification for blight resistant and spathe colour in anthurium [D]. Haikou: Hainan University, 2020. |
[22] | Wang X C, Feng H, Chang Y X, et al.Population sequencing enhances understanding of tea plant evolution[J]. Nature Communications, 2020, 11(1): 4447. doi: 10.1038/s41467-020-18228-8. |
[23] | Zhang X T, Chen S, Shi L Q, et al.Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis[J]. Nature Genetics, 2021, 53(8): 1250-1259. |
[24] | Je J Y, Chen H, Song C, et al.Arabidopsis DREB2C modulates ABA biosynthesis during germination[J]. Biochemical and Biophysical Research Communications, 2014, 452(1): 91-98. |
[25] | Rushton D L, Tripathi P, Rabara R C, et al.WRKY transcription factors: key components in abscisic acid signalling[J]. Plant Biotechnology Journal, 2012, 10(1): 2-11. |
[26] | Nakashima K, Fujita Y, Kanamori N, et al.Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy[J]. Plant Cell Physiology, 2009, 50(7): 1345-1363. |
[27] | Wang Y F, Hou Y X, Qiu J H, et al.Abscisic acid promotes jasmonic acid biosynthesis via a 'SAPK10-bZIP72-AOC' pathway to synergistically inhibit seed germination in rice (Oryza sativa)[J]. New Phytologist, 2020, 228(4): 1336-1353. |
[28] | Chen D H, He L L, Lin M Y, et al.A ras-related small GTP-binding protein, RabE1c, regulates stomatal movements and drought stress responses by mediating the interaction with ABA receptors[J]. Plant Science, 2021, 306: 110858. doi: 10.1016/j.plantsci.2021.110858. |
[29] | 吴丹, 唐冬英, 李新梅, 等. F-box蛋白在植物生长发育中的功能研究进展[J]. 生命科学研究, 2015, 19(4): 362-367.Wu D, Tang D Y, Li X M, et al.Progresses on F-box protein function in plant growth and development[J]. Life Science Research, 2015, 19(4): 362-367. |
[30] | Chen F, Dahal P, Bradfora K J.Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination[J]. Plant Physiology, 2001, 127(3): 928-936. |
[31] | Marowa P, Ding A M, Kong Y Z.Expansins: roles in plant growth and potential applications in crop improvement[J]. Plant Cell Reports, 2016, 35(5): 949-965. |
[32] | Yan A, Wu M J, Yan L M, et al.AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis[J]. Plos One, 2014, 9(1): e85208. doi: 10.1371/journal.pone.0085208. |
[33] | Doerge R W.Mapping and analysis of quantitative trait loci in experimental populations[J]. Nature Reviews Genetics, 2002, 3(1): 43-52. |
[34] | Ferreira A, Silva M C D, Silva L D C E, et al. Estimating the effects of population size and type on the accuracy of genetic maps[J]. Genetics and Molecular Biology, 2006, 29(1): 187-192. |
[35] | Zhong H, Wang Y, Qu F R, et al. A novel TcS allele conferring the high-theacrine and low-caffeine traits and having potential use in tea plant breeding [J]. Horticulture Research, 2022, 9: uhac191. doi: 10.1093/hr/uhac191. |
[1] | LIU Dongna, GONG Xuejiao, LI Lanying, HUANG Fan, YAO Yu, XU Yaqiong, GAO Yuan, LUO Fan. Analysis of Photosynthetic and Fluorescence Characteristics of Albino Tea Plants [J]. Journal of Tea Science, 2023, 43(6): 757-768. |
[2] | YANG Jun, ZHANG Lilan, ZHANG Wenjing, CHEN Linhai, ZHENG Guohua, LI Yijing, WANG Rangjian. Population Structure and Genetic Differences of Tea Germplasm Resources in Fujian [J]. Journal of Tea Science, 2023, 43(6): 769-783. |
[3] | LI Yanchun, WANG Yixiang, YE Jing, LI Zhaowei. Changes of Rhizospheric Pathogen Alternaria sp. and Its Antagonistic Bacteria Pseudomonas sp. of Continuous Cropping Tea Plants Mediated by Phenolic Acids [J]. Journal of Tea Science, 2023, 43(6): 823-834. |
[4] | YANG Jihong, ZHOU Hanchen, XU Yujie. Catalytic Function, Promoter Structure and Functional Analysis of CsNUDX1-cyto in Different Tea Cultivars [J]. Journal of Tea Science, 2023, 43(5): 621-630. |
[5] | LIU Hongxia, LIU Yingying, CHEN Hongping, CHAI Yunfeng. Glyphosate-stress Effects on Shikimic Acid in Tea Leaves [J]. Journal of Tea Science, 2023, 43(5): 657-666. |
[6] | TANG Ziyi, DU Yue, YANG Hongbin, LI Xinghui, YU Youben, WANG Weidong. Changes of Endogenous Hormone Contents and Expression Analysis of Related Genes in Leaves of Tea Plants Under Heat and Drought Stresses [J]. Journal of Tea Science, 2023, 43(4): 489-500. |
[7] | HAN Haidong, ZHOU Liuting, HUANG Xiaoyun, YU Chengran, HUANG Xiusheng. The Characteristics of Fungal Community Structure in Tea Rhizosphere Soil Interplanted with Ganoderma lucidum Based on High-throughput Sequencing Technology [J]. Journal of Tea Science, 2023, 43(4): 513-524. |
[8] | SUN Yue, LIU Mengyue, GAO Chenxi, WU Quanjin, CAO Shixian, YU Shuntian, CHEN Zhidan, JIN Shan, SUN Weijiang. Study on the Differences of Leaf Color and Volatiles of Different Insect-resistance Tea Cultivars [J]. Journal of Tea Science, 2023, 43(4): 525-543. |
[9] | LI Jiasi, LIU Yingqing, ZHANG Yongheng, ZHANG Ying'ao, XIAO Yezi, LIU Lu, YU Youben. Identification of Transcription Factors Interacting with CsNCED2 Promoter and Their Response to Abiotic Stress [J]. Journal of Tea Science, 2023, 43(3): 325-334. |
[10] | SHEN Ruihan, MA Lifeng, YANG Xiangde, FANG Li. Effects of Nitrogen Form and Weak Light Stress on Tea Plant Growth and Metabolism [J]. Journal of Tea Science, 2023, 43(3): 349-355. |
[11] | GUO Lina, HAO Xinyuan, WANG Lu, QI Meng, LI Xiaoman, REN Hengze, ZHENG Qinghua, WANG Xinchao, ZENG Jianming. Study on the Characteristics of CsPHT1;3 and Its Response to Selenium in Tea Plants [J]. Journal of Tea Science, 2023, 43(2): 173-182. |
[12] | LI Hongli, ZHOU Tiefeng, MAO Yuxiao, HUANG Haitao, CUI Hongchun, ZHENG Xuxia, ZHAO Yun. Isolation and Identification of Anthracnose Pathogen from Xihu Longjing Plantation and Screening of Its Plant-derived Fungicides [J]. Journal of Tea Science, 2023, 43(2): 194-204. |
[13] | ZHENG Shizhong, ZHOU Ziwei, CHEN Xiaohui, CAI Liewei, JIANG Shengtao, LIU Shengrong. Screening, Identification and Culture Condition Optimization of Antagonistic Endophytic Bacteria Against Gloeosporium theae-sinensis Miyake [J]. Journal of Tea Science, 2023, 43(2): 205-215. |
[14] | LIU Haoran, ZHANG Chenyu, GONG Yang, YE Yuanyuan, CHEN Jiedan, CHEN Liang, LIU Dingding, MA Chunlei. Development and Application of Albinotea Plant mSNP Molecular Markers Based on Genome-wide Resequencing [J]. Journal of Tea Science, 2023, 43(1): 27-39. |
[15] | YAN Jiawei, CHEN Zongmao, LI Zhaoqun, LUO Zongxiu, BIAN Lei, CAI Xiaoming, JIN Shan. Identification of Watery Saliva Protein from Empoasca onukii and Preliminary Study on the Involvement in the Formation of “Hopperburn” Symptoms in Tea Plants [J]. Journal of Tea Science, 2023, 43(1): 40-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|