Journal of Tea Science ›› 2023, Vol. 43 ›› Issue (6): 747-756.doi: 10.13305/j.cnki.jts.2023.06.012
• Research Paper • Previous Articles Next Articles
WANG Liubin, WU Liyun, WEI Kang, WANG Liyuan*
Received:
2023-08-30
Revised:
2023-10-06
Online:
2023-12-15
Published:
2024-01-08
CLC Number:
WANG Liubin, WU Liyun, WEI Kang, WANG Liyuan. QTL Mapping and Candidate Gene Analysis for Timing of Spring Bud Flush in Tea Plants (Camellia sinensis)[J]. Journal of Tea Science, 2023, 43(6): 747-756.
[1] | Hartley L, Flowers N, Holmes J, et al. Green and black tea for the primary prevention of cardiovascular disease [J]. Cochrane Database of Systematic Reviews, 2013, 2013(6): Cd009934. doi: 10.1002/14651858.CD009934.pub2. |
[2] | Boyle N B, Billington J, Lawton C, et al.A combination of green tea, rhodiola, magnesium and B vitamins modulates brain activity and protects against the effects of induced social stress in healthy volunteers[J]. Nutritional Neuroscience, 2022, 25(9): 1845-1859. |
[3] | Keller A, Wallace T C.Tea intake and cardiovascular disease: an umbrella review[J]. Annals of Medicine, 2021, 53(1): 929-944. |
[4] | Wang X C, Hao X Y, Ma C L, et al.Identification of differential gene expression profiles between winter dormant and sprouting axillary buds in tea plant (Camellia sinensis) by suppression subtractive hybridization[J]. Tree Genetics & Genomes, 2014, 10(5): 1149-1159. |
[5] | Hao X Y, Yang Y J, Yue C, et al.Comprehensive transcriptome analyses reveal differential gene expression profiles of Camellia sinensis axillary buds at para-, endo-, ecodormancy, and bud flush stages[J]. Frontiers in Plant Science, 2017, 8: 553. doi: 10.3389/fpls.2017.00553. |
[6] | Tan L Q, Wang L B, Zhou B, et al.Comparative transcriptional analysis reveled genes related to short winter-dormancy regulation in Camellia sinensis[J]. Plant Growth Regulation, 2020, 92: 401-415. |
[7] | Liu Y J, Chen S, Chen J D, et al.Comprehensive analysis and expression profiles of the AP2/ERF gene family during spring bud break in tea plant (Camellia sinensis)[J]. BMC Plant Biology, 2023, 23(1): 206. doi: 10.1186/s12870-023-04221-y. |
[8] | 刘贤德, 张国范. 运用拟测交策略构建遗传图谱的理论依据及研究进展[J]. 海洋科学, 2008, 32(10): 81-85.Liu X D, Zhang G F.The theory base of constructing genetic map using “pseudo-testcross” mapping strategy and its development[J]. Marine Sciences, 2008, 32(10): 81-85. |
[9] | Tan L Q, Wang L Y, Xu L Y, et al.SSR-based genetic mapping and QTL analysis for timing of spring bud flush, young shoot color, and mature leaf size in tea plant (Camellia sinensis)[J]. Tree Genetics & Genomes, 2016, 12(3): 52. doi: 10.1007/s11295-016-1008-9. |
[10] | Tan L Q, Cui D, Wang L B, et al. Genetic analysis of the early bud flush trait of tea plants (Camellia sinensis) in the cultivar ‘Emei Wenchun’ and its open-pollinated offspring [J]. Horticulture Research, 2022, 21(9): uhac086. doi: 10.1093/hr/uhac086. |
[11] | Xu L Y, Wang L Y, Wei K, et al.High-density SNP linkage map construction and QTL mapping for flavonoid-related traits in a tea plant (Camellia sinensis) using 2b-RAD sequencing[J]. BMC Genomics, 2018, 19(1): 955. doi: 10.1186/s12864-018-5291-8. |
[12] | Wei K, Wang X C, Hao X Y, et al.Development of a genome-wide 200K SNP array and its application for high-density genetic mapping and origin analysis of Camellia sinensis[J]. Plant Biotechnology Journal, 2022, 20(3): 414-416. |
[13] | Ooijen J W.MapQTL®6. Software for the mapping of quantitative trait loci in experimental populations[M]. Wagenigen: Kyazma BV, 2009. |
[14] | Zhang L Y, Meng L, Wu W C, et al.GACD: integrated software for genetic analysis in clonal F1 and double cross populations[J]. Journal of Heredity, 2015, 106(6): 741-744. |
[15] | Voorrips R E.MapChart: software for the graphical presentation of linkage maps and QTLs[J]. Journal Heredity, 2002, 93(1): 77-78. |
[16] | Chen J D, He W Z, Chen S, et al.TeaGVD: a comprehensive database of genomic variations for uncovering the genetic architecture of metabolic traits in tea plants[J]. Frontiers in Plant Science, 2022, 13: 1056891. doi: 10.3389/fpls.2022.1056891. |
[17] | Xia E H, Tong W, Hou Y, et al.The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation[J]. Molecular Plant, 2020, 13(7): 1013-1026. |
[18] | 王新超, 王璐, 郝心愿, 等. 茶树遗传育种研究“十三五”进展及“十四五”发展方向[J]. 中国茶叶, 2021, 43(9): 50-57.Wang X C, Wang L, Hao X Y, et al.Tea genetics and breeding progress during the 13th five-year plan period and development direction in the 14th five-year plan period[J]. China Tea, 2021, 43(9): 50-57. |
[19] | Wang R J, Gao X F, Yang J, et al.Genome-wide association study to identify favorable SNP allelic variations and candidate genes that control the timing of spring bud flush of tea (Camellia sinensis) using SLAF-seq[J]. Journal of Agricultural and Food Chemistry, 2019, 67(37): 10380-10391. |
[20] | You Q, Sood S, Luo Z L, et al.Identifying genomic regions controlling ratoon stunting disease resistance in sugarcane (Saccharum spp.) clonal F1 population[J]. The Crop Journal, 2021, 9(5): 1070-1078. |
[21] | 陈艳梅. 红掌高密度SNP遗传连锁图谱构建及疫病抗性佛焰苞花色性状QTL定位[D]. 海口: 海南大学, 2020.Chen Y M.High SNP density genetic map construction and QTLs mapping for identification for blight resistant and spathe colour in anthurium [D]. Haikou: Hainan University, 2020. |
[22] | Wang X C, Feng H, Chang Y X, et al.Population sequencing enhances understanding of tea plant evolution[J]. Nature Communications, 2020, 11(1): 4447. doi: 10.1038/s41467-020-18228-8. |
[23] | Zhang X T, Chen S, Shi L Q, et al.Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis[J]. Nature Genetics, 2021, 53(8): 1250-1259. |
[24] | Je J Y, Chen H, Song C, et al.Arabidopsis DREB2C modulates ABA biosynthesis during germination[J]. Biochemical and Biophysical Research Communications, 2014, 452(1): 91-98. |
[25] | Rushton D L, Tripathi P, Rabara R C, et al.WRKY transcription factors: key components in abscisic acid signalling[J]. Plant Biotechnology Journal, 2012, 10(1): 2-11. |
[26] | Nakashima K, Fujita Y, Kanamori N, et al.Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy[J]. Plant Cell Physiology, 2009, 50(7): 1345-1363. |
[27] | Wang Y F, Hou Y X, Qiu J H, et al.Abscisic acid promotes jasmonic acid biosynthesis via a 'SAPK10-bZIP72-AOC' pathway to synergistically inhibit seed germination in rice (Oryza sativa)[J]. New Phytologist, 2020, 228(4): 1336-1353. |
[28] | Chen D H, He L L, Lin M Y, et al.A ras-related small GTP-binding protein, RabE1c, regulates stomatal movements and drought stress responses by mediating the interaction with ABA receptors[J]. Plant Science, 2021, 306: 110858. doi: 10.1016/j.plantsci.2021.110858. |
[29] | 吴丹, 唐冬英, 李新梅, 等. F-box蛋白在植物生长发育中的功能研究进展[J]. 生命科学研究, 2015, 19(4): 362-367.Wu D, Tang D Y, Li X M, et al.Progresses on F-box protein function in plant growth and development[J]. Life Science Research, 2015, 19(4): 362-367. |
[30] | Chen F, Dahal P, Bradfora K J.Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination[J]. Plant Physiology, 2001, 127(3): 928-936. |
[31] | Marowa P, Ding A M, Kong Y Z.Expansins: roles in plant growth and potential applications in crop improvement[J]. Plant Cell Reports, 2016, 35(5): 949-965. |
[32] | Yan A, Wu M J, Yan L M, et al.AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis[J]. Plos One, 2014, 9(1): e85208. doi: 10.1371/journal.pone.0085208. |
[33] | Doerge R W.Mapping and analysis of quantitative trait loci in experimental populations[J]. Nature Reviews Genetics, 2002, 3(1): 43-52. |
[34] | Ferreira A, Silva M C D, Silva L D C E, et al. Estimating the effects of population size and type on the accuracy of genetic maps[J]. Genetics and Molecular Biology, 2006, 29(1): 187-192. |
[35] | Zhong H, Wang Y, Qu F R, et al. A novel TcS allele conferring the high-theacrine and low-caffeine traits and having potential use in tea plant breeding [J]. Horticulture Research, 2022, 9: uhac191. doi: 10.1093/hr/uhac191. |
[1] | DONG Yuan, ZHANG Yongheng, XIAO Yezi, YU Youben. Cloning of BZR1 Gene Family in Tea Plants and Molecular Mechanism Study of CsBZR1-5 Response to Drought Stress [J]. Journal of Tea Science, 2025, 45(1): 15-28. |
[2] | YANG Nan, LI Zhuan, LIU Meichen, MA Junjie, SHI Yuntao, WEI Xiangning, LIN Yangshun, MAO Yuyuan, GAO Shuilian. Studies on the Regulation of EGCG Biosynthesis in Tea Plants by Potassium Nutrition [J]. Journal of Tea Science, 2024, 44(6): 887-900. |
[3] | ZHAO Qian, LIU Qian, CAI-HE Jiayi, HE Jieqi, FANG Yunya, LIU Yuxin, CHEN Chao, ZHENG Yaodong, ZHANG Tianjing, YU Wenjuan, YANG Guang. Effects of Combined Drought and Low-temperature Stress on Photosynthetic Physiological Characteristics of Tea Plants and Simulation Prediction [J]. Journal of Tea Science, 2024, 44(6): 901-916. |
[4] | LIU Xiaolu, ZHU Yalan, YU Min, GAI Xinyue, FAN Yangen, SUN Ping, HUANG Xiaoqin. Changes in Cell Wall Structure and Photosynthetic Characteristics of Tea Leaves under Low Temperature Stress [J]. Journal of Tea Science, 2024, 44(6): 917-927. |
[5] | ZHAO Jiancheng, NI Huijing, WANG Bo, CAI Chunju, YANG Zhenya. Effect of Bamboo Density on the Physiological Growth and Tea Quality of Tea Plants under the Moso Bamboo Forest [J]. Journal of Tea Science, 2024, 44(6): 928-940. |
[6] | LU Wei, WU Xiaolong, HU Xianchun, HAO Yong, LIU Chunyan. Physiological Response of Tea Plants Inoculated with Arbuscular Mycorrhizal Fungi under Drought Stress [J]. Journal of Tea Science, 2024, 44(5): 718-734. |
[7] | CHEN Shichun, JIANG Hongyan, LIAO Shuran, CHEN Tingxu, NIU Jinzhi, WANG Xiaoqing. Genetic Diversity Analysis of Euproctis pseudoconspersa and Its Bunyavirus (EpBYV) in China [J]. Journal of Tea Science, 2024, 44(5): 793-806. |
[8] | WANG Juan, TU Yiyi, LÜ Wuyun, CHEN Yijia, LI Shipu, WANG Yuchun, CHEN Yanan. Identification of the Pathogen Causing New Twig Wilting on Tea Plants and Screening of Control Chemicals [J]. Journal of Tea Science, 2024, 44(5): 807-815. |
[9] | ZHANG Yazhen, ZHONG Sitong, CHEN Zhihui, KONG Xiangrui, SHAN Ruiyang, ZHENG Shiqin, YU Wenquan, CHEN Changsong. Study on the Synthetic Site of Caffeine in Different Etiolated Tea Germplasms [J]. Journal of Tea Science, 2024, 44(4): 575-584. |
[10] | LONG Lu, TANG Dandan, CHEN Wei, TAN Liqiang, CHEN Shengxiang, TANG Qian. Identification and Expression Pattern Analysis of STOP Gene Family in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2024, 44(3): 386-398. |
[11] | ZHANG Shuqing, GUO Jinmei, LI Jianfeng, WU Ling, WANG Xi, ZENG Zhengqun. Effects of Phosphate Solubilizing Bacteriaand Phosphate-solubilizing and Nitrogen-fixing Bacteria on Selenium and Zinc Contents in Selenium-rich Soil and Camellia sinensis Seedlings in Guizhou [J]. Journal of Tea Science, 2024, 44(3): 431-442. |
[12] | QIN Yujie, GUO Mingming, CHEN Yongjing, ZHOU Li. Determination of Afidopyropen and Metabolite M440I007 in Tea Tissues by Modified QuEChERS Coupled with Ultra-high Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Journal of Tea Science, 2024, 44(3): 515-525. |
[13] | CUI Qingmei, LIANG Jinbo, MA Huijie, HU Shuangling, CHEN Qinghua, WU Liyun, HE Mengdi, WANG Liubin, TAN Licai, ZHANG Qiang, WANG Liyuan. Genetic Diversity and Population Structure Relationship Analysis of Wild Tea Germplasm Resources in Badong County, Hubei Province [J]. Journal of Tea Science, 2024, 44(2): 193-206. |
[14] | SONG Bo, JIA Peining, YE Wenqi, WU Jun, SUN Weijiang, XUE Zhihui. Physiological Differences and Expression Analysis of Wax Synthesis Related Gene WSD1 in Tea Roots Treated with Fluorine [J]. Journal of Tea Science, 2024, 44(2): 219-230. |
[15] | LIU Dongna, GONG Xuejiao, LI Lanying, HUANG Fan, YAO Yu, XU Yaqiong, GAO Yuan, LUO Fan. Analysis of Photosynthetic and Fluorescence Characteristics of Albino Tea Plants [J]. Journal of Tea Science, 2023, 43(6): 757-768. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|