[1] Islam M S.Effects of the aqueous extract of white tea (Camellia sinensis) in a streptozotocin-induced diabetes model of rats[J]. Phytomedicine, 2011, 19(1): 25-31. [2] Xia X Y, Wang X D, Wang H, et al.Ameliorative effect of white tea from 50-year-old tree of Camellia sinensis L. (Theaceae) on kidney damage in diabetic mice via SIRT1/AMPK pathway[J]. Journal of Ethnopharmacology, 2021, 272: 113919. doi: 10.1016/j.jep.2021.113919. [3] 刘均, 李强, 谭蓉. 基于斑马鱼模型评价白茶的降糖作用[J]. 现代食品科技, 2023, 39(3): 45-54. Liu J, Li Q, Tan R.Hypoglycemic effects of white tea based on the zebrafish model[J]. Modern Food Science and Technology, 2023, 39(3): 45-54. [4] Deng Y T, Lin-shiau S Y, Shyur L F, et al. Pu-erh tea polysaccharides decrease blood sugar by inhibition of α-glucosidase activity in vitro and in mice[J]. Food & Function, 2015, 6(5): 1539-1546. [5] 戴伟东, 解东超, 林智. 白茶功能性成分及保健功效研究进展[J]. 中国茶叶, 2021, 43(4): 1-8. Dai W D, Xie D C, Lin Z.Research progress of white tea's functional ingredients and health benefits[J]. China Tea, 2021, 43(4): 1-8. [6] Ni D J, Ai Z Y, Munoz-sandoval D, et al. Inhibition of the facilitative sugar transporters (GLUTs) by tea extracts and catechins[J]. FASEB Journal, 2020, 34(8): 9995-10010. [7] Forester S C, Gu Y, Lambert J D.Inhibition of starch digestion by the green tea polyphenol,(-)-epigallocatechin-3-gallate[J]. Molecular Nutrition & Food Research, 2012, 56(11): 1647-1654. [8] Liu H W, Chan Y C, Wang M F, et al.Dietary (-)-epigallocatechin-3-gallate supplementation counteracts aging-associated skeletal muscle insulin resistance and fatty liver in senescence-accelerated mouse[J]. Journal of Agricultural and Food Chemistry, 2015, 63(38): 8407-8417. [9] 薛刚, 卢阳, 邱玺瑞, 等. 基于网络药理学和分子对接探究清宣止咳颗粒治疗H1N1感染的机制[J/OL]. 南京中医药大学学报, 2025: 1-11 [2025-01-21]. http://kns.cnki.net/kcms/detail/32.1247.r.20250117.1731.002.html. Xue G, Lu Y, Qiu X R, et al. Mechanisms of Qingxuan Zhike Granules on influenza based on network pharmacology and molecular docking [J/OL]. Journal of Nanjing University of Traditional Chinese Medicine, 2025: 1-11 [2025-01-21]. http://kns.cnki.net/kcms/detail/32.1247.r.20250117.1731.002.html. [10] 叶向丽, 林达淮, 刘婉婷, 等. 基于斑马鱼模型与分子对接的鼠曲草醇提物抗病毒性肺炎作用研究[J]. 中国医院药学杂志, 2025, 45(1): 37-46. Ye X L, Lin D H, Liu W T, et al.Study on anti-viral pneumonia effect of the alcohol extract of Gnaphalium affine D. Don based on a zebrafish model and molecular docking[J]. Chinese Journal of Hospital Pharmacy, 2025, 45(1): 37-46. [11] Tang X K, Meng Y L, Li H N, et al.Characterization of metalaxyl-induced notochord toxicity based on biochemical and transcriptomics in zebrafish (Danio rerio) model[J]. Journal of Hazardous Materials, 2025, 486: 136985. doi: 10.1016/j.jhazmat.2024.136985. [12] 牛旭东, 何溢琨, 何梓龙, 等. 基于网络药理学与代谢组学和分子对接的整合药理学策略研究温胆汤治疗慢性阻塞性肺疾病的作用机制[J]. 中国药学杂志, 2024, 59(11): 998-1010. Niu X D, He Y K, He Z L, et al.Research on the mechanism of Wendan decoction in treating chronic obstructive pulmonary disease through an integrated pharmacological strategy based on network pharmacology, metabolomics, and molecular docking[J]. Chinese Pharmaceutical Journal, 2024, 59(11): 998-1010. [13] Thakur P, Mittal N, Chaudhary J, et al.Unveiling the substantial role of rutin in the management of drug-induced nephropathy using network pharmacology and molecular docking[J]. International Immunopharmacology, 2025, 146: 113911. doi: 10.1016/j.intimp.2024.113911. [14] 杨嘉睿, 高家瑞, 赵梓轩, 等. 基于网络药理学和分子对接分析金银花在奶牛生产中的抗炎作用及机制[J]. 动物营养学报, 2023, 35(5): 3104-3118. Yang J R, Gao J R, Zhao Z X, et al.Anti-inflammatory effect and mechanism of Lonicerae japonicae flos in dairy cow production based on network pharmacology and molecular docking[J]. Journal of Animal Nutrition, 2023, 35(5): 3104-3118. [15] Popa C, Netea M G, van Riel P L C M, et al. The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk[J]. Journal of Lipid Research, 2007, 48(4): 751-762. [16] Taniguchi K, Xia L, Goldberg H J, et al.Inhibition of Src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice[J]. Diabetes, 2013, 62(11): 3874-3886. [17] Darawadi B, Hafsa H, Sahil R S K. Role of tumor suppressor p53 family in glucose metabolism in association with diabetes[J]. Advances in Cancer Chemotherapy and Pharmacology, 2023, 1(1): 16000101. doi: 10.23880/accp-16000101. [18] Liadis N, Murakami K, Eweida M, et al.Caspase-3-dependent β-cell apoptosis in the initiation of autoimmune diabetes mellitus[J]. Molecular and Cellular Biology, 2005, 25(9): 3620-3629 [19] 朱妍. 糖尿病斑马鱼模型研究进展[J]. 肾脏病与透析肾移植杂志, 2021, 30(1): 59-63. Zhu Y.Zebrafish models in study of diabetes mellitus[J]. Chinese Journal of Nephrology, Dialysis & Transplantation, 2021, 30(1): 59-63. [20] Wang Y J, Kan Z P, Thompson H J, et al.The impact of six typical processing methods on the chemical composition of tea leaves using a single Camellia sinensis cultivar Longjing 43[J]. Journal of Agricultural and Food Chemistry, 2019, 67(19): 5423-5436. [21] Dewar L, Heuberger R.The effect of acute caffeine intake on insulin sensitivity and glycemic control in people with diabetes[J]. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2017, 11(s2): S631-S635. [22] 戴明珠, 郭胜亚, 徐懿乔, 等. 用于功效评价的斑马鱼转换人用剂量的换算方法: CN202010256107.8[P].2024-07-30[2025-01-21]. Dai M Z, Guo S Y, Xu Y Q, et al. Conversion method of zebrafish conversion for efficacy evaluation: CN202010256107.8 [P].2024-07-30[2025-01-21]. |