Journal of Tea Science ›› 2025, Vol. 45 ›› Issue (4): 604-614.doi: 10.13305/j.cnki.jts.20250312.001
• Research Paper • Previous Articles Next Articles
CHEN Wenxue1, ZHU Li1, LIU Yueyun2, JIANG Yongwen1,*, ZHU Hongkai1,*
Received:
2024-12-17
Revised:
2025-02-20
Online:
2025-08-15
Published:
2025-08-15
CLC Number:
CHEN Wenxue, ZHU Li, LIU Yueyun, JIANG Yongwen, ZHU Hongkai. Study on Distribution of α-Dicarbonyl in Different Teas[J]. Journal of Tea Science, 2025, 45(4): 604-614.
[1] Chen X M, Kitts D.Identification and quantification of α-dicarbonyl compounds produced in different sugar-amino acid Maillard reaction model systems[J]. Food Research International, 2011, 44(9): 2775-2782. [2] Zheng J, Ou J Y, Ou S Y.Alpha-dicarbonyl compounds[M]//Wang S. Chemical hazards in thermally-processed foods. Singapore: Springer Singapore, 2019: 19-46. [3] Navarro M, Atzenbeck L, Pischetsrieder M, et al.Investigations on the reaction of C3 and C6 α-dicarbonyl compounds with hydroxytyrosol and related compounds under competitive conditions[J]. Journal of Agricultural and Food Chemistry, 2016, 64(32): 6327-6332. [4] Hellwig M, Degen J, Henle T.3-Deoxygalactosone, a “New” 1,2-dicarbonyl compound in milk products[J]. Journal of Agricultural and Food Chemistry, 2010, 58(19): 10752-10760. [5] Zhu H, Poojary M M, Andersen M L, et al.Trapping of carbonyl compounds by epicatechin: reaction kinetics and identification of epicatechin adducts in stored UHT milk[J]. Journal of Agricultural and Food Chemistry, 2020, 68(29): 7718-7726. [6] Fewkes J J, Dordevic A L, Murray M, et al.Association between endothelial function and skin advanced glycation end-products (AGEs) accumulation in a sample of predominantly young and healthy adults[J]. Cardiovascular Diabetology, 2024, 23(1): 332. doi:10.1186/s12933-024-02428-3. [7] Nowotny K, Schröter D, Schreiner M, et al.Dietary advanced glycation end products and their relevance for human health[J]. Ageing Research Reviews, 2018, 47: 55-66. [8] He C, Sabol J, Mitsuhashi T, et al.Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration[J]. Diabetes, 1999, 48(6): 1308-1315. [9] Flaig M, Qi S, Wei G D, et al.Characterization of the key odorants in a high-grade Chinese green tea beverage (Camellia sinensis; Jingshan cha) by means of the sensomics approach and elucidation of odorant changes in tea leaves caused by the tea manufacturing process[J]. Journal of Agricultural and Food Chemistry, 2020, 68(18): 5168-5179. [10] Wang B Y, Qu F F, Wang P Q, et al.Characterization analysis of flavor compounds in green teas at different drying temperature[J]. LWT, 2022, 161: 113394. doi:10.1016/j.lwt.2022.113394. [11] Zhang W J, Cao J X, Li Z G, et al.HS-SPME and GC/MS volatile component analysis of Yinghong No. 9 dark tea during the pile fermentation process[J]. Food Chemistry, 2021, 357: 129654. doi:10.1016/j.foodchem.2021.129654. [12] Su D, He J J, Zhou Y Z, et al.Aroma effects of key volatile compounds in Keemun black tea at different grades: HS-SPME-GC-MS, sensory evaluation, and chemometrics[J]. Food Chemistry, 2022, 373: 131587. doi:10.1016/j.foodchem.2021.131587. [13] Guo X Y, Song C K, Ho C T, et al.Contribution of L-theanine to the formation of 2,5-dimethylpyrazine, a key roasted peanutty flavor in Oolong tea during manufacturing processes[J]. Food Chemistry, 2018, 263: 18-28. [14] Yang Y Q, Hua J J, Deng Y L, et al.Aroma dynamic characteristics during the process of variable-temperature final firing of Congou black tea by electronic nose and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry[J]. Food Research International, 2020, 137: 109656. doi:10.1016/j.foodres.2020.109656. [15] Zhu H K, Niu L, Zhu L, et al.Contents of α-dicarbonyl compounds in commercial black tea and affected by the processing[J]. Food Research International, 2024, 178: 113876. doi:10.1016/j.foodres.2023.113876. [16] Wang Y, Ho C T.Flavour chemistry of methylglyoxal and glyoxal[J]. Chemical Society Reviews, 2012, 41(11): 4140-4149. [17] Zhang W, Poojary M M, Rauh V, et al.Quantitation of α-dicarbonyls and advanced glycation endproducts in conventional and lactose-hydrolyzed ultrahigh temperature milk during 1 year of storage[J]. Journal of Agricultural and Food Chemistry, 2019, 67(46): 12863-12874. [18] 颜雨涵, 黄啸天, 张依琳, 等. 氨基酸与糖醇结构对褐变反应的影响及机制研究[J]. 食品与发酵工业, 2025, 51(1): 167-173. Yan Y H, Huang X T, Zhang Y L, et al.Effect and mechanism of the structure of amino acids and sugar alcohols on browning reaction[J]. Food and Fermentation Industries, 2025, 51(1): 167-173. [19] Hellwig M, Gensberger-Reigl S, Henle T, et al.Food-derived 1,2-dicarbonyl compounds and their role in diseases[J]. Seminars in Cancer Biology, 2018, 49: 1-8. [20] Nobis A, Kunz O S, Gastl M, et al.Influence of 3-DG as a key precursor compound on aging of lager beers[J]. Journal of Agricultural and Food Chemistry, 2021, 69(12): 3732-3740. [21] Zhu J X, Chen Z Y, Chen L, et al.Comparison and structural characterization of polysaccharides from natural and artificial Se-enriched green tea[J]. International Journal of Biological Macromolecules, 2019, 130: 388-398. [22] Aktağ I G, Gökmen V.Investigations on the formation of α-dicarbonyl compounds and 5-hydroxymethylfurfural in apple juice, orange juice, and peach puree under industrial processing conditions[J]. European Food Research and Technology, 2021, 247(4): 797-805. [23] Schulz A, Trage C, Schwarz H, et al.Electrospray ionization mass spectrometric investigations of α-dicarbonyl compounds: probing intermediates formed in the course of the nonenzymatic browning reaction of L-ascorbic acid[J]. International Journal of Mass Spectrometry, 2007, 262(3): 169-173. [24] Hollnagel A, Kroh L W.3-Deoxypentosulose: an α-dicarbonyl compound predominating in nonenzymatic browning of oligosaccharides in aqueous solution[J]. Journal of Agricultural and Food Chemistry, 2002, 50(6): 1659-1664. [25] Collard F O, Delpierre G, Stroobant V, et al.A mammalian protein homologous to fructosamine-3-kinase is a ketosamine-3-kinase acting on psicosamines and ribulosamines but not on fructosamines[J]. Diabetes, 2003, 52(12): 2888-2895. [26] Glomb M A, Gobert J, Voigt M.Dicarbonyls from Maillard degradation of glucose and maltose[M]//Mottram D S, Taylor A J. Controlling Maillard pathways to generate flavors. Washington: American Chemical Society, 2010: 35-44. [27] Maasen K, Scheijen J L J M, Opperhuizen A, et al. Quantification of dicarbonyl compounds in commonly consumed foods and drinks; presentation of a food composition database for dicarbonyls[J]. Food Chemistry, 2021, 339: 128063. doi:10.1016/j.foodchem.2020.128063. [28] 刘均, 冯巩, 谭蓉. 扁形绿茶加工过程中不同工艺对其抗氧化生物活性的影响[J]. 现代食品科技, 2024, 41(4): 275-285. Liu J, Feng G, Tan R.Effect of different processing technology on anti-oxidative bioactivity of flattened green tea during processing[J]. Modern Food Science and Technology, 2024, 41(4): 275-285. [29] 彭叶, 郜秋艳, 李美凤, 等. 不同杀青方式对黄金芽绿茶γ-氨基丁酸含量及品质成分的影响[J]. 南方农业学报, 2023, 54(10): 3020-3028. Peng Y, Gao Q Y, Li M F, et al.Effects of different fixation methods on γ-aminobutyric acid content and quality components of Huangjinya green tea[J]. South China Agricultural Journal, 2023, 54(10): 3020-3028. [30] 楼桢优, 周拥军, 钟维标, 等. 不同闷黄时间对平阳黄汤滋味成分和品质的影响[J]. 中国食品学报, 2024, 24(6): 297-307. Lou Z Y, Zhou Y J, Zhong W B, et al.The effects of different yellowing time on the taste quality components of ‘Pingyanghuangtang’[J]. Journal of Food Science, 2024, 24(6): 297-307. [31] 宋加艳, 何加兴, 欧伊伶, 等. 碧香早夏季鲜叶加工乌龙茶过程中品质成分动态变化[J]. 现代食品科技, 2021, 37(2): 238-248, 163. Song J Y, He J X, Ou Y L, et al.Dynamic changes in quality and composition of Oolong tea made with fresh Bixiangzao summer tea leaves during processing[J]. Modern Food Science and Technology, 2021, 37(2): 238-248, 163. [32] 苏小琴, 左小博, 杨秀芳, 等. 绿茶低温负压干燥工艺优化研究[J]. 保鲜与加工, 2019, 19(3): 97-103. Su X Q, Zuo X B, Yang X F, et al.Optimization of low-temperature vacuum drying technology for green tea[J]. Preservation and Processing, 2019, 19(3): 97-103. [33] 陈海强, 何辉星, 赵崇真. 英葟黄茶加工关键技术初报[J]. 福建茶叶, 2024, 46(10): 24-26. Chen H Q, He H X, Zhao C Z.Preliminary report on the key technologies for the processing of Yinghuang yellow tea[J]. Tea in Fujian, 2024, 46(10): 24-26. [34] 曾愉, 陈维, 马成英, 等. 干热后处理前后花香型乌龙茶的品质比较[J]. 现代食品科技, 2023, 39(3): 288-297. Zeng Y, Chen W, Ma C Y, et al.Comparison of the quality of flower-scented Oolong tea before and after the post-dry heat treatment[J]. Modern Food Science and Technology, 2023, 39(3): 288-297. [35] 梁子钧, 俞滢, 张磊, 等. 基于HS-SPME-GC-MS分析茶树新品系‘白云0492’白茶香气特征成分[J]. 食品科学, 2023, 44(22): 313-321. Liang Z J, Yu Y, Zhang L, et al.Headspace solid phase microextraction combined with gas chromatography-mass spectrometry analysis of aroma characteristics of white tea from new strain ‘Baiyun 0492’[J]. Food Science, 2023, 44(22): 313-321. [36] Khan M, Liu H L, Wang J, et al.Inhibitory effect of phenolic compounds and plant extracts on the formation of advanced glycation end products: a comprehensive review[J]. Food Research International, 2020, 130: 108933. doi:10.1016/j.foodres.2019.108933. [37] Jost T, Henning C, Heymann T, et al.Comprehensive analyses of carbohydrates, 1,2-dicarbonyl compounds, and advanced glycation end products in industrial bread making[J]. Journal of Agricultural and Food Chemistry, 2021, 69(12): 3720-3731. [38] 彭影琦, 龙军, 林玲, 等. 相同加工原料下六大茶类抑菌效果比较[J]. 食品与机械, 2017, 33(7): 47-50, 76. Peng Y Q, Long J, Lin L, et al.Comparison on anti-microbial activities of six kinds of teas processed by the same raw materials[J]. Food and Machinery, 2017, 33(7): 47-50, 76. [39] Zhang Q Z, Huang Z J, Wang Y, et al.Chinese bayberry (Myrica rubra) phenolics mitigated protein glycoxidation and formation of advanced glycation end-products: a mechanistic investigation[J]. Food Chemistry, 2021, 361: 130102. doi:10.1016/j.foodchem.2021.130102. [40] Chen P S, Cui H P, Feng L H, et al.Effect of the C-ring structure of flavonoids on the yield of adducts formed by the linkage of the active site at the A-ring and Amadori rearrangement products during the Maillard intermediate preparation[J]. Journal of Agricultural and Food Chemistry, 2022, 70(10): 3280-3288. [41] 徐旭华, 黄文洁, 陈旭峰, 等. ‘丹霞2号’红茶加工过程中品质特征成分的动态变化研究[J]. 园艺学报, 2024, 51(1): 145-161. Xu X H, Huang W J, Chen X F, et al.Research on the dynamic change of tea quality-related chemical compositions during ‘Danxia 2’ black tea processing[J]. Acta Horticulturae Sinica, 2024, 51(1): 145-161. [42] Jiao Y, He J L, Li F L, et al.Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine in tea and the factors affecting their formation[J]. Food Chemistry, 2017, 232: 683-688. [43] 许婧, 黄友谊, 黄进, 等. 茶叶不同提取物及不同茶叶对结核分枝杆菌抑制作用的研究[J]. 茶叶科学, 2024, 44(2): 341-349. Xu J, Huang Y Y, Huang J, et al.Research on the inhibition of tea extracts and different types of tea on Mycobacterium tuberculosis[J]. Journal of Tea Science, 2024, 44(2): 341-349. [44] Mavric E, Wittmann S, Barth G, et al.Identification and quantification of methylglyoxal as the dominant antibacterial constituent of manuka (Leptospermum scoparium) honeys from New Zealand[J]. Molecular Nutrition & Food Research, 2008, 52(4): 483-489. [45] Brighina S, Restuccia C, Arena E, et al.Antibacterial activity of 1,2-dicarbonyl compounds and the influence of the in vitro assay system[J]. Food Chemistry, 2020, 311: 125905. doi:10.1016/j.foodchem.2019.125905. [46] Oelschlaegel S, Gruner M, Wang P N, et al.Classification and characterization of manuka honeys based on phenolic compounds and methylglyoxal[J]. Journal of Agricultural and Food Chemistry, 2012, 60(29): 7229-7237. |
[1] | CHEN Jiaxin, ZHANG Jinjia, ZUO Huiling, JIAO Yuhang, SHI Anhua. The Mechanism and Research Progress of Epigallocatechin Gallate in Improving Non-alcoholic Fatty Liver Disease [J]. Journal of Tea Science, 2024, 44(4): 543-553. |
[2] | LEI Xiang, ZHANG Minfeng, LIN Hui, WANG Lili, ZHENG Deyong. Carbonylation Modification of Epicatechin and Its Activities of UV Absorption and Antioxidant [J]. Journal of Tea Science, 2024, 44(3): 493-500. |
[3] | CHEN Yifan, KAN Xinyi, JIANG Xiaolan, GAO Liping, XIA Tao. Physicochemical Properties of Tannase in Tea Plants (Camellia sinensis) and Its Application on Green Tea Beverages [J]. Journal of Tea Science, 2023, 43(1): 124-134. |
[4] | MAN Ziyi, FENG Yi, WU Xiangting. Inhibitory Effect of Catechin Monomer EGC on Pancreatic Lipase and Mechanism [J]. Journal of Tea Science, 2022, 42(6): 863-874. |
[5] | YU Rongxin, ZHENG Qinqin, CHEN Hongping, ZHANG Jinsong, ZHANG Xiangchun. Recent Advances in Catechin Biomedical Nanomaterials [J]. Journal of Tea Science, 2022, 42(4): 447-462. |
[6] | WANG Yuyuan, LIU Renjian, LIU Shaoqun, SHU Canwei, SUN Binmei, ZHENG Peng. Expression Analysis and Functional Identification of CsTT2 R2R3-MYB Transcription Factor in Tea Plants [J]. Journal of Tea Science, 2022, 42(4): 463-476. |
[7] | LIU Yajun, WANG Peiqiang, JIANG Xiaolan, ZHUANG Juhua, GAO Liping, XIA Tao. Research Progress on the Biosynthesis of Monomeric and Polymeric Catechins in Camellia sinensis [J]. Journal of Tea Science, 2022, 42(1): 1-17. |
[8] | MA Bingsong, WANG Jiacai, XU Chengcheng, REN Xiaoying, MA Cunqiang, ZHOU Binxing. Differences of Phenolic Components in Puer Raw Tea with Various Storage Periods and Their Effects on the in vitro Antioxidant Capacities [J]. Journal of Tea Science, 2022, 42(1): 51-62. |
[9] | WU Wenliang, TONG Tong, HU Yao, ZHOU Hao, YIN Xia, ZHANG Shuguang. Camellia Ptilophylla and Specific Chemical Components, Theirs Health Beneficial Effects [J]. Journal of Tea Science, 2021, 41(5): 593-607. |
[10] | FANG Hongfeng, ZHANG Huixia, WANG Guohong, YANG Minhe. Fungal Mixed Fermentation for The Production of Lipase and Its Activity Analysis in Galloylated Catechin Hydrolysis [J]. Journal of Tea Science, 2019, 39(1): 88-97. |
[11] | TU Zheng, MEI Huiling, LI Huan, LIU Xinqiu, Emmanuel Arkorful, ZHANG Caili, CHEN Xuan, SUN Kang, LI Xinghui. Effects of Co-fermentation by Eurotium cristatum and Lactobacillus plantarum on the Quality of Green Tea Liquid Beverage [J]. Journal of Tea Science, 2018, 38(5): 496-507. |
[12] | ZHANG Yue, HU Yunfei, WANG Shumao, KE Zixing, LIN Jinke. Bioinformatic Analysis of MYB Transcription Factors Involved in Catechins Biosynthesis in Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2018, 38(2): 162-173. |
[13] | RAN Wei, ZHANG Jin, ZHANG Xin, LIN Songbo, SUN Xiaoling. Infestation of Ectropis obliqua Affects the Catechin Metabolism in Tea Plants [J]. Journal of Tea Science, 2018, 38(2): 133-139. |
[14] | SUN Lili, ZENG Xiangquan, Nilesh W Gaikwad, WANG Huan, XU Hairong, YE Jianhui. Determination of Green Tea Catechin Biomarkers and It′s Relative Application [J]. Journal of Tea Science, 2017, 37(5): 429-441. |
[15] | WANG Le, LI Huan, LI Jiahao, CHEN Xuan, LI Xinghui, SUN Kang. The Evaluation of the Stability of EGCG-Selenium Nanoparticles and Its Effect on Selenium Absorption and Utilization [J]. Journal of Tea Science, 2017, 37(4): 373-382. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|