[1] 姜仁华, 陈富桥, 潘昌健, 等. 关于发展茶业新质生产力的思考[J]. 中国茶叶, 2024, 46(11): 1-6. Jiang R H, Chen F Q, Pan C J, et al.Thoughts on developing new quality productivity in the tea industry[J]. China Tea, 2024, 46(11): 1-6. [2] 梅宇. 2024年中国茶叶生产与内销形势分析[J]. 中国茶叶, 2025, 47(6): 24-30. Mei Y.Analysis of China's tea production and domestic sales in 2024[J]. China Tea, 2025, 47(6): 24-30. [3] 杨亚军. 坚持问题导向推动我国茶业高质量发展—我国茶产业发展现状与建议[J]. 中国茶叶, 2023, 45(1): 1-5. Yang Y J.Adhere to problem orientation and promote high-quality development of China's tea industry: current situation and suggestions of tea industry development in China[J]. China Tea, 2023, 45(1): 1-5. [4] 尹军峰. 中国茶饮创新发展态势与启示[J]. 中国茶叶, 2025, 47(3): 1-5. Yin J F.The innovative development trend and enlightenment of China's tea drinking[J]. China Tea, 2025, 47(3): 1-5. [5] 俞蓉欣, 郑芹芹, 陈红平, 等. 儿茶素生物医用纳米材料研究进展[J]. 茶叶科学, 2022, 42(4): 447-462. Yu R X, Zheng Q Q, Chen H P, et al.Recent advances in catechin biomedical nanomaterials[J]. Journal of Tea Science, 2022, 42(4): 447-462. [6] Zhang Y X, Feng X Y, Lin H Y, et al.Tieguanyin extracts ameliorated DSS-induced mouse colitis by suppressing inflammation and regulating intestinal microbiota[J]. Food & Function, 2022, 13(24): 13040-13051. [7] Yang M C, Zhou L, Kan Z P, et al.Beneficial health effects and possible health concerns of tea consumption: a review[J]. Beverage Plant Research, 2025, 5: e035. doi: 10.48130/bpr-0025-0036. [8] 徐伟, 俞蓉欣, 张相春, 等. 多酚自组装抗菌生物材料的构建及其应用进展[J]. 茶叶科学, 2024, 44(1): 1-15. Xu W, Yu R X, Zhang X C, et al.Construction of polyphenol self-assembly antibacterial biomaterials and progress in their applications[J]. Journal of Tea Science, 2024, 44(1): 1-15. [9] Yang M, Zhang X, Yang C S.Bioavailability of tea polyphenols: a key factor in understanding their mechanisms of action in vivo and health effects[J]. Journal of Agricultural and Food Chemistry, 2025, 73(7): 3816-3825. [10] Mereles D, Hunstein W.Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises?[J]. International Journal of Molecular Sciences, 2011, 12(9): 5592-5603. [11] Xu C, Zhou S, Song H Z, et al.Green tea polyphenols-derived hybrid materials in manufacturing, environment, food and healthcare[J]. Nano Today, 2023, 52: 101990. doi: 10.1016/j.nantod.2023.101990. [12] Xiang X J, Feng X, Lu S J, et al.Indocyanine green potentiated paclitaxel nanoprodrugs for imaging and chemotherapy[J]. Exploration, 2022, 2(4): 20220008. doi: 10.1002/EXP.20220008. [13] Wang Y L, Mu Y, Zhang Y L, et al.Accessible and effective nanomedicines: self-assembly products from Chinese herbal medicines (CHMs)[J]. Advanced Functional Materials, 2025, 35(9): 2416151. doi: 10.1002/adfm.202416151. [14] Wu J J, Yang Y, Yuan X Y, et al.Role of particle aggregates in herbal medicine decoction showing they are not useless: considering Coptis chinensis decoction as an example[J]. Food Function, 2020, 11(12): 10480-10492. [15] Zhou J W, Liu J, Lin D, et al.Boiling-induced nanoparticles and their constitutive proteins from Isatis indigotica Fort. root decoction: purification and identification[J]. Journal of Traditional and Complementary Medicine, 2017, 7(2): 178-187. [16] Lü S W, Su H, Sun S, et al.Isolation and characterization of nanometre aggregates from a Bai-Hu-Tang decoction and their antipyretic effect[J]. Scientific Reports, 2018, 8(1): 12209. doi: 10.1038/s41598-018-30690-5. [17] Lin D, Du Q, Wang H Q, et al.Antidiabetic micro-/nanoaggregates from Ge-Gen-Qin-Lian-Tang decoction increase absorption of baicalin and cellular antioxidant activity in vitro[J]. BioMed Research International, 2017, 2017: 9217912. doi: 10.1155/2017/9217912. [18] Zhou J W, Gao G Z, Chu Q P, et al.Chromatographic isolation of nanoparticles from Ma-Xing-Shi-Gan-Tang decoction and their characterization[J]. Journal of Ethnopharmacology, 2014, 151(3): 1116-1123. [19] Zhou J W, Zhang J, Gao G Z, et al.Boiling licorice produces self-assembled protein nanoparticles: a novel source of bioactive nanomaterials[J]. Journal of Agricultural and Food Chemistry, 2019, 67(33): 9354-9361. [20] Zhang Y, Cui Z, Mei H, et al.Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer[J]. Carbohydrate Polymers, 2019, 219: 143-154. doi: 10.1016/j.carbpol.2019.04.041. [21] Li T, Wang P L, Guo W B, et al.Natural berberine-based Chinese herb medicine assembled nanostructures with modified antibacterial application[J]. ACS Nano, 2019, 13(6): 6770-6781. [22] Dai L, Zhu W Y, Si C L, et al.“Nano-Ginseng” for enhanced cytotoxicity against cancer cells[J]. International Journal of Molecular Sciences, 2018, 19(2): 627. doi: 10.3390/ijms19020627. [23] Li J M, Zhang Y L, Jin T, et al.Advanced pharmaceutical nanotechnologies applied for Chinese herbal medicines[J]. Advanced Science, 2025, 12(31): e00167. doi: 10.1002/advs.202500167. [24] Yadi M, Mostafavi E, Saleh B, et al.Current developments in green synthesis of metallic nanoparticles using plant extracts: a review[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46(s3): S336-S343. [25] Wang S S, Wang Z Q, Li Z G, et al.Recent advances in tea and other plant polyphenol biomaterials for antibacterial and disease treatment[J]. Beverage Plant Research, 2025, 5: e010. doi: 10.48130/bpr-0025-0012. [26] Du Y J, Huo Y, Yang Q, et al.Ultrasmall iron-gallic acid coordination polymer nanodots with antioxidative neuroprotection for PET/MR imaging-guided ischemia stroke therapy[J]. Exploration, 2023, 3(1): 20220041. doi: 10.1002/EXP.20220041. [27] Yu R X, Chen H P, He J, et al.Engineering antimicrobial metal-phenolic network nanoparticles with high biocompatibility for wound healing[J]. Advanced Materials, 2024, 36(6): e2307680. doi: 10.1002/adma.202307680. [28] Ye Y, Zheng Q Q, Wang Z Q, et al.Metal-phenolic nanoparticles enhance low temperature photothermal therapy for bacterial biofilm in superficial infections[J]. Journal of Nanobiotechnology, 2024, 22: 713. doi: 10.1186/s12951-024-02985-5. [29] Xu W, Jia X Y, Yang M C, et al.Tea polyphenol self-assembly nanocomposite coating for fruit preservation[J]. ACS Nano, 2025, 19(31): 28146-28159. [30] Jeejeebhoy K.Zinc: an essential trace element for parenteral nutrition[J]. Gastroenterology, 2009, 137(s5): S7-S12. [31] Biesinger M C, Payne B P, Grosvenor A P, et al.Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[J]. Applied Surface Science, 2011, 257(7): 2717-2730. [32] Beroz F, Yan J, Meir Y, et al.Verticalization of bacterial biofilms[J]. Nature Physics, 2018, 14(9): 954-960. [33] Chong Z Z, Souayah N.Oxidative stress: pathological driver in chronic neurodegenerative diseases[J] 2025, 14(6): 696. doi: 10.3390/antiox14060696. [34] Joorabloo A, Liu T Q.Recent advances in reactive oxygen species scavenging nanomaterials for wound healing[J]. Exploration, 2024, 4(3): 20230066. doi: 10.1002/EXP.20230066. [35] Peng H B, Yao F B, Zhao J X, et al.Unraveling mitochondria-targeting reactive oxygen species modulation and their implementations in cancer therapy by nanomaterials[J]. Exploration, 2023, 3(2): 20220115. doi: 10.1002/EXP.20220115. [36] Takatsuka M, Goto S, Kobayashi K, et al.Evaluation of pure antioxidative capacity of antioxidants: ESR spectroscopy of stable radicals by DPPH and ABTS assays with singular value decomposition[J]. Food Bioscience, 2022, 48: 101714. doi: 10.1016/j.fbio.2022.101714. [37] 时杰, 王永安, 孙基泽, 等. 亚硒酸钠通过活性氧(ROS)/谷胱甘肽(GSH)/谷胱甘肽过氧化物酶4(GPX4)轴诱导非小细胞肺癌A549细胞铁死亡[J]. 中国无机分析化学, 2024, 14(1): 124-130. Shi J, Wang Y A, Sun J Z, et al.Sodium selenite induces ferroptosis in non-small cell lung cancer A549 cells via reactive oxygen species(ROS)/glutathione(GSH)/glutathione peroxidase 4(GPX4) axis[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(1): 124-130. [38] Lo J, Liu C C, Li Y S, et al.Punicalagin attenuates LPS-Induced Inflammation and ROS production in microglia by inhibiting the MAPK/NF-κB signaling pathway and NLRP3 inflammasome activation[J]. Journal of Inflammation Research, 2022, 15: 5347-5359. doi: 10.2147/JIR.S372773. [39] Meng X Q, Wei Q, Wang S Y, et al.Anti-inflammatory effect of polysaccharides from Sambucus williamsii Hance roots in lipopolysaccharide-stimulated RAW264.7 macrophages and acute lung injury in mice[J]. International Journal of Biological Macromolecules, 2025, 306(Part1): 141368. doi: 10.1016/j.ijbiomac.2025.141368. [40] Akhtar M, Rafique H, Alam Y, et al.Pectin (RG-1)-like polysaccharides isolated from Gastrodiae rhizoma via fractional ethanol precipitation: potent inhibitors of pro inflammatory enzyme modulation targeting iNOS and COX-2[J]. International Journal of Biological Macromolecules, 2025, 322(Part4): 146784. doi: 10.1016/j.ijbiomac.2025.146784. |