Journal of Tea Science ›› 2024, Vol. 44 ›› Issue (1): 1-15.doi: 10.13305/j.cnki.jts.2024.01.004
• Review • Next Articles
XU Wei1,2, YU Rongxin2, ZHANG Xiangchun2,*, ZHANG Yiwen2, CHEN Hongping2, TIAN Baoming2, ZHENG Qinqin2, WU Yuanyuan3, XIA Chen4, WEI Bing1,*
Received:
2023-12-11
Revised:
2024-02-04
Online:
2024-02-25
Published:
2024-03-13
CLC Number:
XU Wei, YU Rongxin, ZHANG Xiangchun, ZHANG Yiwen, CHEN Hongping, TIAN Baoming, ZHENG Qinqin, WU Yuanyuan, XIA Chen, WEI Bing. Construction of Polyphenol Self-assembly Antibacterial Biomaterials and Progress in Their Applications[J]. Journal of Tea Science, 2024, 44(1): 1-15.
[1] Luo G, Gao S J.Global health concerns stirred by emerging viral infections[J]. Journal of Medical Virology, 2020, 92(4): 399-400. [2] Fisher R A, Gollan B, Helaine S.Persistent bacterial infections and persister cells[J]. Nature Reviews Microbiology, 2017, 15(8): 453-464. [3] Zhang X C, Zhang Z C, Shu Q M, et al.Copper clusters: an effective antibacterial for eradicating multidrug-resistant bacterial infection [4] Afrasiabi S, Pourhajibagher M, Raoofian R, et al.Therapeutic applications of nucleic acid aptamers in microbial infections[J]. Journal of Biomedical Science, 2020, 27(1): 6. doi: 10.1186/s12929-019-0611-0. [5] Komerik N, Macrobert A J.Photodynamic therapy as an alternative antimicrobial modality for oral infections[J]. Journal of Environmental Pathology and Toxicology, 2006, 25(1/2): 487-504. [6] Antimicrobial Resistance Collaborators.Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis[J]. Lancet, 2022, 399(10325): 629-655. [7] Zapletal K, Machnik G, Okopień B.Polyphenols of antibacterial potential: may they help in resolving some present hurdles in medicine?[J]. Folia Biologica, 2022, 68(3): 87-96. [8] Anon. Jim O'Neill[J]. Nature Reviews Drug Discovery, 2016, 15(8): 526. doi: 10.1038/nrd.2016.160. [9] Zhen X M, Lundborg C S, Sun X S, et al.Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review[J]. Antimicrobial Resistance &Infection Control, 2019, 8: 137. doi: 10.1186/s13756-019-0590-7. [10] Willyard C.The drug-resistant bacteria that pose the greatest health threats[J]. Nature, 2017, 543(7643): 15. doi: 10.1038/nature.2017.21550. [11] Wang Y, Yang Y N, Shi Y R, et al.Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives[J]. Advanced Materials, 2020, 32(18): e1904106. doi: 10.1002/adma.201904106. [12] Paterson D L, Harris P N.Colistin resistance: a major breach in our last line of defence[J]. The Lancet Infectious Diseases, 2016, 16(2): 132-133. [13] Yu M, Chua S L.Demolishing the great wall of biofilms in gram-negative bacteria: to disrupt or disperse?[J]. Medicinal Research Reviews, 2020, 40(3): 1103-1116. [14] Li Y, Miao Y, Yang L N, et al.Recent advances in the development and antimicrobial applications of metal-phenolic networks[J]. Advanced Science, 2022, 9(27): e2202684. doi: 10.1002/advs.202202684. [15] Jelinkova P, Mazumdar A, Sur V P, et al.Nanoparticle-drug conjugates treating bacterial infections[J]. Journal of Controlled Release, 2019, 307: 166-185. [16] Gupta A, Mumtaz S, Li C H, et al.Combatting antibiotic-resistant bacteria using nanomaterials[J]. Chemical Society Reviews, 2019, 48(2): 415-427. [17] Li H, Zou Y, Jiang J.Synthesis of Ag@CuO nanohybrids and their photo-enhanced bactericidal effect through concerted Ag ion release and reactive oxygen species generation[J]. Dalton Transactions, 2020, 49(27): 9274-9281. [18] Saadi N, Alotaibi K, Hassan L, et al.Enhancing the antibacterial efficacy of aluminum foil by nanostructuring its surface using hot water treatment[J]. Nanotechnology, 2021, 32(32): 325103. doi: 10.1088/1361-6528/abfd59. [19] Cueva C, Silva M, Pinillos I, et al.Interplay between dietary polyphenols and oral and gut microbiota in the development of colorectal cancer[J]. Nutrients, 2020, 12(3): 625. doi: 10.3390/nu12030625. [20] Kumar H, Bhardwaj K, Cruz-martins N, et al. Applications of fruit polyphenols and their functionalized nanoparticles against foodborne bacteria: a mini review[J]. Molecules, 2021, 26(11): 3447. doi: 10.3390/molecules26113447. [21] Bae J Y, Seo Y H, Oh S W.Antibacterial activities of polyphenols against foodborne pathogens and their application as antibacterial agents[J]. Food Science and Biotechnology, 2022, 31(8): 985-997. [22] 姚敏, 李大祥, 谢忠稳. 茶叶主要特征性化合物抗心血管炎症研究进展[J]. 茶叶科学, 2020, 40(1): 1-14. Yao M, Li D X, Xie Z W.Recent advance on anti-cardiovascular inflammation of major characteristic compounds in tea[J]. Journal of Tea Science, 2020, 40(1): 1-14. [23] 余春燕, 朱坤, 黄建安, 等. 茶多酚对心肌保护作用的研究进展[J]. 食品科学, 2022, 43(3): 296-305. Yu C Y, Zhu K, Huang J A, et al.Advances in the study of cardioprotective effects of tea polyphenols on myocardium[J]. Food Science, 2022, 43(3): 296-305. [24] 林勇, 谢思玲, 柯菀萍, 等. 安化黑茶的降血糖作用及其机理[J]. 中国茶叶, 2023, 45(2): 1-7. Lin Y, Xie S L, Ke W P, et al.Study on the hypoglycemic effect and mechanism of Anhua dark tea[J]. China Tea, 2023, 45(2): 1-7. [25] 雷丽萍, 朱跃骅, 张剑, 等. 茶多酚对冰藏大黄鱼品质及微生物的影响[J]. 茶叶科学, 2017, 37(5): 523-531. Lei L P, Zhu Y H, Zhang J, et al.Effects of tea polyphenols on quality and microorganisms of [26] 张杨波, 饶甜甜, 刘仲华. 茶多酚的抗癌作用机制及EGCG纳米载体技术研究进展[J]. 食品工业科技, 2019, 40(16): 343-348. Zhang Y B, Rao T T, Liu Z H.Research progress on the anticancer mechanism of tea polyphenol and EGCG nanocarrier technology[J]. Science and Technology of Food Industry, 2019, 40(16): 343-348. [27] Olmedo-Juárez A, Briones-Robles T I, Zaragoza-Bastida A, et al. Antibacterial activity of compounds isolated from [28] Ignasimuthu K, Prakash R, Murthy P S, et al.Enhanced bioaccessibility of green tea polyphenols and lipophilic activity of EGCG octaacetate on gram-negative bacteria[J]. LWT, 2019, 105: 103-109. [29] 俞蓉欣, 郑芹芹, 陈红平, 等. 儿茶素生物医用纳米材料研究进展[J]. 茶叶科学, 2022, 42(4): 447-462. Yu R X, Zheng Q Q, Chen H P, et al.Recent advances in catechin biomedical nanomaterials[J]. Journal of Tea Science, 2022, 42(4): 447-462. [30] Davidson P M, Taylor T M, Schmidt S E.Chemical preservatives and natural antimicrobial compounds [M]//Doyle M P, Buchanan R L. Food microbiology: fundamentals and frontiers. Washington: ASM Press, 2012: 765-801. [31] Moulton M C, Braydich-Stolle L K, Nadagouda M N, et al. Synthesis, characterization and biocompatibility of "green" synthesized silver nanoparticles using tea polyphenols[J]. Nanoscale, 2010, 2(5): 763-770. [32] Nadagouda M N, Varma R S.Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract[J]. Green Chemistry, 2008, 10(8): 859-862. [33] Pelle F D, Scroccarello A, Sergi M, et al.Simple and rapid silver nanoparticles based antioxidant capacity assays: reactivity study for phenolic compounds[J]. Food Chemistry, 2018, 256: 342-349. [34] Farrokhnia M, Karimi S, AskariaN S. Strong hydrogen bonding of gallic acid during synthesis of an efficient AgNPs colorimetric sensor for melamine detection via dis-synthesis strategy[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6672-6684. [35] Huo J J, Jia Q Y, Wang K, et al.Metal-phenolic networks assembled on TiO2 nanospikes for antimicrobial peptide deposition and osteoconductivity enhancement in orthopedic applications[J]. Langmuir, 2023, 39(3): 1238-1249. [36] Wang Y R, Zou Y, Wu Y, et al.Universal antifouling and photothermal antibacterial surfaces based on multifunctional metal-phenolic networks for prevention of biofilm formation[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48403-48413. [37] Yu R X, Chen H P, He J, et al.Engineering antimicrobial metal-phenolic network nanoparticles with high biocompatibility for wound healing[J]. Advanced Materials, 2024, 36: 2307680. doi: 10.1002/adma.202307680. [38] Wang X J, Feng Y, Chen C F, et al.Preparation, characterization and activity of tea polyphenols-zinc complex[J]. LWT-Food Science and Technology, 2020, 131: 109810. doi: 10.1016/j.lwt.2020.109810. [39] Liu L L, Ge C, Zhang Y, et al.Tannic acid-modified silver nanoparticles for enhancing anti-biofilm activities and modulating biofilm formation[J]. Biomaterials Science, 2020, 8(17): 4852-4860. [40] Zhang C Y, Huang L J, Sun D W, et al.Interfacing metal-polyphenolic networks upon photothermal gold nanorods for triplex-evolved biocompatible bactericidal activity[J]. Journal of Hazardous Materials, 2022, 426: 127824. doi: 10.1016/j.jhazmat.2021.127824. [41] Zhang Y, He Y, Shi C X, et al.Tannic acid-assisted synthesis of biodegradable and antibacterial mesoporous organosilica nanoparticles decorated with nanosilver[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1695-1702. [42] Hu B, Shen Y, Adamcik J, et al.Polyphenol-binding amyloid fibrils self-assemble into reversible hydrogels with antibacterial activity[J]. ACS Nano, 2018, 12(4): 3385-3396. [43] Seliktar D.Designing cell-compatible hydrogels for biomedical applications[J]. Science, 2012, 336(6085): 1124-1128. [44] Hoffman A S.Hydrogels for biomedical applications[J]. Advanced Drug Delivery Reviews, 2002, 54(1): 3-12. [45] Keplinger C, Sun J Y, Foo C C, et al.Stretchable, transparent, ionic conductors[J]. Science, 2013, 341(6149): 984-987. [46] Chan K W Y, Liu G S, Song X L, et al. MRI-detectable pH nanosensors incorporated into hydrogels for [47] Larson C, Peele B, Li S, et al.Highly stretchable electroluminescent skin for optical signaling and tactile sensing[J]. Science, 2016, 351(6277): 1071-1074. [48] Saha A, Adamcik J, Bolisetty S, et al.Fibrillar networks of glycyrrhizic acid for hybrid nanomaterials with catalytic features[J]. Angewandte Chemie-International Edition, 2015, 54(18): 5408-5412. [49] Nyström G, Fernández-Ronco M P, Bolisetty S, et al. Amyloid templated gold aerogels[J]. Advanced Materials, 2016, 28(3): 472-478. [50] Shen S H, Fan D D, Yuan Y, et al.An ultrasmall infinite coordination polymer nanomedicine-composited biomimetic hydrogel for programmed dressing-chemo-low level laser combination therapy of burn wounds[J]. Chemical Engineering Journal, 2021, 426: 130610. doi: 10.1016/j.cej.2021.130610. [51] Tan H Q, Sun J J, Jin D W, et al.Coupling PEG-LZM polymer networks with polyphenols yields suturable biohydrogels for tissue patching[J]. Biomaterials Science, 2020, 8(12): 3334-3347. [52] Dong Z Q, Lin Y Y, Xu S B, et al.NIR-triggered tea polyphenol-modified gold nanoparticles-loaded hydrogel treats periodontitis by inhibiting bacteria and inducing bone regeneration[J]. Materials & Design, 2023, 225: 111487. doi: 10.1016/j.matdes.2022.111487. [53] Deng H L, Yu Z P, Chen S G, et al.Facile and eco-friendly fabrication of polysaccharides-based nanocomposite hydrogel for photothermal treatment of wound infection[J]. Carbohydrate Polymers, 2020, 230: 115565. doi: 10.1016/j.carbpol.2019.115565. [54] Zhu Y N, Zhang J M, Song J Y, et al.A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment[J]. Advanced Functional Materials, 2020, 30(6): 1905493. doi: 10.1002/adfm.201905493. [55] Ahmadian Z, Correia A, Hasany M, et al.A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for pH-responsive wound healing acceleration[J]. Advanced Healthcare Materials, 2021, 10(3): 2001122. doi: 10.1002/adhm.202001122. [56] Jin F Y, Liao S Q, Li W, et al.Amphiphilic sodium alginate-polylysine hydrogel with high antibacterial efficiency in a wide pH range[J]. Carbohydrate Polymers, 2023, 299: 120195. doi: 10.1016/j.carbpol.2022.120195. [57] Li M Y, Wang H, Hu J F, et al.Smart hydrogels with antibacterial properties built from all natural building blocks[J]. Chemistry of Materials, 2019, 31(18): 7678-7685. [58] Liang Y Q, Li Z L, Huang Y, et al.Dual-dynamic-bond cross-linkedantibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing[J]. ACS Nano, 2021, 15(4): 7078-7093. [59] Madni A, Kousar R, Naeem N, et al.Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering[J]. Journal of Bioresources and Bioproducts, 2021, 6(1): 11-25. [60] Toragall V, Jayapala N, Muthukumar S P, et al.Biodegradable chitosan-sodium alginate-oleic acid nanocarrier promotes bioavailability and target delivery of lutein in rat model with no toxicity[J]. Food Chemistry, 2020, 330: 127195. doi: 10.1016/j.foodchem.2020.127195. [61] Li F, Jin H M, Xiao J, et al.The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent[J]. Food Research International, 2018, 111: 351-360. [62] Rezazadeh N H, Buazar F, Matroodi S.Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalaized silver nanoparticles[J]. Scientific Reports, 2020, 10(1): 19615. doi: 10.1038/s41598-020-76726-7. [63] Riccucci G, Ferraris S, Reggio C, et al.Polyphenols from grape pomace: functionalization of chitosan-coated hydroxyapatite for modulated swelling and release of polyphenols[J]. Langmuir, 2021, 37(51): 14793-14804. [64] Chen Q F, Wei L T, Lai Y P, et al.Preparation and characterization of tea polyphenols-chitosan-based nanoparticles and their application in starch films[J]. Bioresources, 2022, 17(3): 4306-4322. [65] Sun X X, Wang Z, Kadouh H, et al.The antimicrobial, mechanical, physical and structural properties of chitosan-gallic acid films[J]. LWT-Food Science and Technology, 2014, 57(1): 83-89. [66] Yu Y L, Li P F, Zhu C L, et al.Multifunctional and recyclable photothermally responsive cryogels as efficient platforms for wound healing[J]. Advanced Functional Materials, 2019, 29(35): 1904402. doi: 10.1002/adfm.201904402. [67] Yu H P, Zhou Q, He D, et al.Enhanced mechanical and functional properties of chitosan/polyvinyl alcohol/hydroxypropyl methylcellulose/alizarin composite film by incorporating cinnamon essential oil and tea polyphenols[J]. International Journal of Biological Macromolecules, 2023, 253: 126859. doi: 10.1016/j.ijbiomac.2023.126859. [68] Liang J, Yan H, Puligundla P, et al.Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: a review[J]. Food Hydrocolloids, 2017, 69: 286-292. [69] Ashwar B A, Gani A.Noncovalent interactions of sea buckthorn polyphenols with casein and whey proteins: effect on the stability, antioxidant potential, and bioaccessibility of polyphenols[J]. ACS Food Science & Technology, 2021, 1(7): 1206-1214. [70] Grace M H, Yousef G G, Esposito D, et al.Bioactive capacity, sensory properties, and nutritional analysis of a shelf stable protein-rich functional ingredient with concentrated fruit and vegetable phytoactives[J]. Plant Foods for Human Nutrition, 2014, 69(4): 372-378. [71] Grace M H, Truong A N, Truong V D, et al.Novel value-added uses for sweet potato juice and flour in polyphenol- and protein-enriched functional food ingredients[J]. Food Science & Nutrition, 2015, 3(5): 415-424. [72] Ribnicky D M, Roopchand D E, Oren A, et al.Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1)[J]. Food Chemistry, 2014, 142: 349-357. [73] Mushtaq M, Gani A, Gani A, et al.Use of pomegranate peel extract incorporated zein film with improved properties for prolonged shelf life of fresh Himalayan cheese (Kalari/kradi)[J]. Innovative Food Science & Emerging Technologies, 2018, 48: 25-32. [74] Maroufi L Y, Ghorbani M, Tabibiazar M, et al.Advanced properties of gelatin film by incorporating modified kappa-carrageenan and zein nanoparticles for active food packaging[J]. International Journal of Biological Macromolecules, 2021, 183: 753-759. [75] Giteru S G, Coorey R, Bertolatti D, et al.Physicochemical and antimicrobial properties of citral and quercetin incorporated kafirin-based bioactive films[J]. Food Chemistry, 2015, 168: 341-347. [76] Kavoosi G, Dadfar S M M, Purfard A M. Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing[J]. Journal of Food Science, 2013, 78(2): E244-E250. doi: 10.1111/1750-3841.12015. [77] Cano A, Andres M, Chiralt A, et al.Use of tannins to enhance the functional properties of protein based films[J]. Food Hydrocolloids, 2020, 100: 105443. doi: 10.1016/j.foodhyd.2019.105443. [78] Han Y Y, Lin Z X, Zhou J J, et al.Polyphenol-mediated assembly of proteins for engineering functional materials[J]. Angewandte Chemie-International Edition, 2020, 59(36): 15618-15625. [79] Du T, Wang S C, Li X, et al.Hydrogen-bonded self-assembly coating as GRAS sprayable preservatives for fresh food safety[J]. Food Hydrocolloids, 2023, 145: 109089. doi: 10.1016/j.foodhyd.2023.109089. [80] Zhang Y T, Pu C F, Tang W T, et al.Effects of four polyphenols loading on the attributes of lipid bilayers[J]. Journal of Food Engineering, 2020, 282: 110008. doi: 10.1016/j.jfoodeng.2020.110008. [81] Zhang R, Li Q Y, Yang L L, et al.The antibacterial activity and antibacterial mechanism of the tea polyphenol liposomes/lysozyme-chitosan gradual sustained release composite coating[J]. International Journal of Food Science and Technology, 2022, 57(6): 3691-3701. [82] Maherani B, Arab-Tehrany E, Mozafari M R, et al.Liposomes: a review of manufacturing techniques and targeting strategies[J]. Current Nanoscience, 2011, 7(3): 436-452. [83] Huang L, Teng W D, Cao J X, et al.Liposomes as delivery system for applications in meat products[J]. Foods, 2022, 11(19): 3017. doi: 10.3390/foods11193017. [84] Das A, Konyak P M, Das A, et al.Physicochemical characterization of dual action liposomal formulations: anticancer and antimicrobial[J]. Heliyon, 2019, 5(8): e02372. doi: 10.1016/j.heliyon.2019.e02372. [85] Rao S Q, Sun M L, Hu Y, et al. [86] Sepahvand S, Amiri S, Radi M, et al.Effect of thymol and nanostructured lipid carriers (NLCs) incorporated with thymol as antimicrobial agents in sausage[J]. Sustainability, 2022, 14(4): 1973. doi: 10.3390/su14041973. [87] Ezzat H M, Elnaggar Y S R, Abdallah O Y. Improved oral bioavailability of the anticancer drug catechin using chitosomes: design, in-vitro appraisal and in-vivo studies[J]. International Journal of Pharmaceutics, 2019, 565: 488-498. [88] Joraholmen M W, Johannessen M, Gravningen K, et al.Liposomes-in-hydrogel delivery system enhances the potential of resveratrol in combating vaginal chlamydia infection[J]. Pharmaceutics, 2020, 12(12): 1203. doi: 10.3390/pharmaceutics12121203. |
[1] | SHENG Zheng, DU Wenkai, WANG Chongchong, ZHANG Boan, ZHANG Haihua, DU Qizhen. Effect of Tea Polyphenols on the Determination of Reducing Sugar in Tea Food [J]. Journal of Tea Science, 2023, 43(4): 567-575. |
[2] | ZHOU Jihong, CHEN Wei, DING Lejia, WANG Yuefei. Regulatory Effect and Mechanism of EGCG on Metabolic Disorders in High-fructose Diet Mice [J]. Journal of Tea Science, 2023, 43(3): 399-410. |
[3] | YU Rongxin, ZHENG Qinqin, CHEN Hongping, ZHANG Jinsong, ZHANG Xiangchun. Recent Advances in Catechin Biomedical Nanomaterials [J]. Journal of Tea Science, 2022, 42(4): 447-462. |
[4] | ZHOU Shaofeng, QIAN Yunfei, ZHAO Zhen, CHEN Xuan, LI Xinghui. Effect of the Tea with Different Degrees of Fermentation on the Formation of Tea Scum [J]. Journal of Tea Science, 2022, 42(1): 76-86. |
[5] | WU Xin, SONG Feihu, PEI Yongsheng, ZHU Guanyu, JIANG Lebing, NING Wenkai, LI Zhenfeng, LIU Benying. Study on the Tea Quality Changes and Predictions during the Microwave Fixation Process by Machine Vision [J]. Journal of Tea Science, 2021, 41(6): 854-864. |
[6] | WANG Shenglin, YANG Chongshan, LIU Zhongyuan, LIU Shanjian, DONG Chunwang. Rapid Detection Method of Tea Polyphenol Content in Black Tea Fermentation Based on Electrical Properties [J]. Journal of Tea Science, 2021, 41(2): 251-260. |
[7] | CAO Bingbing, WANG Qiushuang, QIN Dandan, FU Donghe, FANG Kaixing, JIANG Xiaohui, LI Hongjian, WANG Qing, PAN Chendong, LI Bo, WU Hualing. Study on the Correlation between the Activities of Key Enzymes Involving in Anthocyanin Synthesis and the Contents of Important Polyphenols in Purple Tea [J]. Journal of Tea Science, 2020, 40(6): 724-738. |
[8] | LU Li, CHENG Xi, ZHANG Bo, SHEN Xiaoxia, LIU Yan, XIONG Li, YUAN Xiao, LI Yuanhua, LI Xinghui. Establishment of Predictive Model for Quantitative Analysis of Tea Polyphenols and Caffeine of Souchong by Near Infrared Spectroscopy [J]. Journal of Tea Science, 2020, 40(5): 689-695. |
[9] | YAO Min, LI Daxiang, XIE Zhongwen. Recent Advance on Anti-cardiovascular Inflammation of Major Characteristic Compounds in Tea [J]. Journal of Tea Science, 2020, 40(1): 1-14. |
[10] | ZHOU Fang, OUYANG Jian, HUANG Jian'an, LIU Zhonghua. Advances in Research on the Regulation of Tea Polyphenols and Effects on Intestinal Flora [J]. Journal of Tea Science, 2019, 39(6): 619-630. |
[11] | ZHANG Shuping, WANG Yuefei, XU Ping. Prevention of Tea Polyphenols on Atherosclerosis and Relative Mechanisms [J]. Journal of Tea Science, 2019, 39(3): 231-246. |
[12] | ZHU Lin, WU Long, CHEN Xiaoqiang, CHEN Xueling, WU Zhengqi, SHI Yong. Interaction between Tea Polyphenols and Polysaccharides: Progress in Research on Mechanism and Function [J]. Journal of Tea Science, 2019, 39(2): 203-210. |
[13] | WU Genliang, HOU Aixiang, LI Ke, LI Zongjun. Effects of Polyphenols of Old Fu Brick Tea on the Elderly Intestinal Flora [J]. Journal of Tea Science, 2018, 38(3): 319-330. |
[14] | SHI Chunlin, LI Xiaohuan, HUANG Xiangxiang. Effects of Green Tea Polyphenols on Oxidative Stress Induced by Passive Smoking in Mice Lung [J]. Journal of Tea Science, 2018, 38(2): 212-220. |
[15] | LEI Liping, ZHU Yuehua, ZHANG Jian, YANG Wenge, LI Puyou, LIU Yanjie, QIAN Yunxia. Effects of Tea Polyphenols on Quality and Microorganisms of Pseudosciaena crocea during Iced Storage [J]. Journal of Tea Science, 2017, 37(5): 523-531. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|