Journal of Tea Science ›› 2017, Vol. 37 ›› Issue (6): 551-564.
Previous Articles Next Articles
LIU Yaqin1, TIAN Kunhong1, SUN Qilu1, PAN Cheng1, LI Yeyun1, JIANG Jiayue1, JIANG Changjun1,2,*
Received:
2017-07-04
Revised:
2017-08-05
Online:
2017-12-15
Published:
2019-08-23
CLC Number:
LIU Yaqin, TIAN Kunhong, SUN Qilu, PAN Cheng, LI Yeyun, JIANG Jiayue, JIANG Changjun. Cloning and Expression Analysis of miR156a-targeted Genes SPL6 and SPL9 in Camellia sinensis[J]. Journal of Tea Science, 2017, 37(6): 551-564.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Klein J, Saedler H, Huijser P.A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA[J]. Mol Gen Genet, 1996, 250(1): 7-16. |
[2] | Yu S, Galvao V C, Zhang Y C, et al.Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA promoter binding-like transcription factors[J]. Plant Cell, 2012, 24(8): 3320-3332. |
[3] | Wu G, Poethig R S.Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[J]. Development, 2006, 133(18): 3539-3547. |
[4] | Wang J W, Czech B, Weigel D. miR156-Regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell, 2009, 138(4): 738-749. |
[5] | Schwarz S, Grande A V, Bujdoso N, et al.The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis[J]. Plant Molecular Biology, 2008, 67(1/2): 183-195. |
[6] | Jung J H, Seo P J, Kang S K, et al.miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions[J]. Plant Molecular Biology, 2011, 76(1/2): 35-45. |
[7] | Eriksson M, Moseley J L, Tottey S, et al.Genetic dissection of nutritional copper signaling in chlamydomonas distinguishes regulatory and target genes[J]. Genetics, 2004, 168(2): 795-807. |
[8] | Yang Z, Wang X, Gu S, et al.Comparative study of SBP-box gene family in Arabidopsis and rice[J]. Gene, 2008, 407(1/2): 1-11. |
[9] | Rhoades M W, Reinhart B J, Lim L P.Prediction of plant microrna targets[J]. Cell, 2002, 110(4): 513-520. |
[10] | Gandikota M, Birkenbihl R P, Höhmann S, et al.The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings[J]. Plant Journal for Cell & Molecular Biology, 2007, 49(4): 683-693. |
[11] | Zhang Y, Schwarz S, Saedler H, et al.SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis[J]. Plant Molecular Biology, 2007, 63(3): 429-439. |
[12] | Wang J W, Schwab R, Czech B, et al.Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana[J]. Plant Cell, 2008, 20(5): 1231-1243. |
[13] | Shikata M, Koyama T, Mitsuda N, et al.Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase[J]. Plant & Cell Physiology, 2009, 50(12): 2133-2145. |
[14] | Cui L, Shan J, Shi M, et al.The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants[J]. Plant Journal for Cell & Molecular Biology, 2014, 80(6): 1108-1117. |
[15] | Stief A, Altmann S, Hoffmann K, et al.Arabidopsis miR156 regulates tolerance to recurring environmental stress through spl transcription factors[J]. The Plant Cell, 2014, 26(4): 1792-1807. |
[16] | Arshad M, Feyissa B A, Amyot L, et al.MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13[J]. Plant Science, 2017, 258:122-136. |
[17] | Wang M, Wang Q, Zhang B.Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.)[J]. Gene, 2013, 530(1): 26-32. |
[18] | Lei K J, Lin Y M, An G Y. miR156 modulates rhizosphere acidification in response to phosphate limitation in Arabidopsis[J]. Journal of Plant Research, 2016, 129(2): 275-284. |
[19] | 宋长年, 钱剑林, 房经贵, 等. 枳SPL9和SPL13全长cDNA克隆、亚细胞定位和表达分析[J]. 中国农业科学, 2010, 43(10): 2105-2114. |
[20] | Miura K, Ikeda M, Matsubara A, et al.OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nature Genetics, 2010, 42(6): 545-549. |
[21] | Li M, Zhao S Z, Zhao C Z, et al.Cloning and characterization of SPL-family genes in the peanut (Arachis hypogaea L.)[J]. Genetics and Molecular Research, 2015, 14(1): 2331-2340. |
[22] | Zhang X, Dou L, Pang C, et al.Genomic organization, differential expression, and functional analysis of the SPL gene family in Gossypium hirsutum[J]. Molecular Genetics and Genomics, 2015, 290(1): 115-126. |
[23] | 赵晓初, 李贺, 代红艳, 等. 草莓miR156靶基因SPL9的克隆与表达分析[J]. 中国农业科学, 2011, 44(12): 2515-2522. |
[24] | 李磊. 不同肥料处理对茶树生长和茶叶品质的影响[D]. 泰安: 山东农业大学, 2010. |
[25] | Tamura K, Peterson D, Peterson N, et al.MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739. |
[26] | Erika V G.Stem-Loop qRT-PCR for the detection of plant microRNAs [M]. Totowa N J: Humana Press, 2016. |
[27] | 谢小芳. 茶树miRNA靶基因的鉴定及在低温胁迫下的表达分析[D]. 合肥:安徽农业大学, 2016. |
[28] | 张永福, 任禛, 莫丽玲, 等. 葡萄品种生长势差异的相关机制研究[J]. 北方园艺, 2015 (2): 1-5. |
[29] | 杨雨华, 宗建伟, 杨风岭. 不同生长势马尾松光合日变化研究[J]. 中南林业科技大学学报(自然科学版), 2014, (8): 25-29. |
[30] | Yamasaki K, Kigawa T, Inoue M, et al.A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors[J]. Journal of Molecular Biology, 2004, 337(1): 49-63. |
[31] | Birkenbihl R P, Jach G, Saedler H, et al.Functional dissection of the plant-specific sbp-domain: overlap of the dna-binding and nuclear localization domains[J]. Journal of Molecular Biology, 2005, 352(3): 585-596. |
[32] | Yang L, Conway S R, Poethig R S.Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156[J]. Development, 2011, 138(2): 245-249. |
[33] | Yoshikawa T, Ozawa S, Sentoku N, et al.Change of shoot architecture during juvenile-to-adult phase transition in soybean[J]. Planta, 2013, 238(1): 229-237. |
[34] | Gou J Y, Felippes F F, Liu C J, et al.Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor[J]. Plant Cell, 2011, 23(4): 1512-1522. |
[35] | Salinas M, Xing S, Höhmann S, et al.Genomic organization, phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato[J]. Planta, 2012, 235(6): 1171-1184. |
[36] | 冯圣军. MicroRNA156调控烟草发育阶段转变的功能研究[D]. 临安: 浙江农林大学, 2014. |
[37] | 虞莎, 王佳伟. miR156介导的高等植物年龄途径研究进展[J]. 中国科学, 2014, 59(15): 1398-1404. |
[38] | Xin M M, Wang Y, Yao Y Y, et al.Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat[J]. BMC Plant Biology, 2010, 10: 123-133. |
[39] | Yu X, Wang H, Lu Y Z, et al.Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa[J]. Journal of Experimental Botany, 2012, 63(2): 1025-1038. |
[40] | Arshad M, Gruber M Y, Wall K, et al.An insight into microrna156 role in salinity stress responses of alfalfa[J]. Frontiers in Plant Science, 2017, 8(658):356-370. |
[41] | Yu Z X, Wang L J, Zhao B, et al.Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and patchouli (Pogostemon cablin) by the miR156-Targeted SPL transcription factors[J]. Molecular Plant, 2014, 8(1): 98-110. |
[1] | ZHU Qian, SHAO Chenyu, ZHOU Biao, LIU Shuoqian, LIU Zhonghua, TIAN Na. Identification of Tea ICE Gene Family and Cloning and Expression Analysis of CsICE43 under Low-temperature [J]. Journal of Tea Science, 2025, 45(1): 43-60. |
[2] | YIN Minghua, ZHANG Mutong, XU Zilin, OUYANG Qian, WANG Meixuan, LI Wenting. Analysis of the Structural Characteristics and Codon Usage Biase of the Mitochondrial Genome in Tea Cultivar ‘Damianbai’ [J]. Journal of Tea Science, 2025, 45(1): 61-78. |
[3] | XU Wenluan, WEN Xiaoju, JIA Yuxuan, NI Dejiang, WANG Mingle, CHEN Yuqiong. Identification of Pectin Methylesterase and Its Inhibitory Subfamily Genes, and Functional Analysis of CsPME55 in Response to Fluoride Stress in Camellia sinensis [J]. Journal of Tea Science, 2024, 44(6): 869-886. |
[4] | LUO Wei, ZHANG Jiaqi, YANG Ni, HU Zhihang, HAO Jiannan, LIU Hui, TAN Shanshan, ZHUANG Jing. Identification and Tissue Expression Analysis of Sucrose Transporter (SUT) Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2024, 44(4): 585-597. |
[5] | YIN Minghua, ZHANG Jiaxin, LE Yun, HE Fanfan, HUANG Tianhui, ZHANG Mutong. Genomic Characteristics, Codon Preference, and Phylogenetic Analysis of Chloroplasts of Camellia sinensis cv. ‘Damianbai’ [J]. Journal of Tea Science, 2024, 44(3): 411-430. |
[6] | ZHONG Sitong, ZHANG Yazhen, YOU Xiaomei, CHEN Zhihui, KONG Xiangrui, LIN Zhenghe, WU Huini, JIN Shan, CHEN Changsong. Identification of CAB Gene Family and Excavation of Key Genes Related to Leaf Yellowing Variationin Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2024, 44(2): 175-192. |
[7] | HUANG Mengdi, CHEN Lan, SU Qin, HU Jinyu, LIU Guizhi, TAN Yueping, LIU Shuoqian, TIAN Na. The Development of CAPS Molecular Markers for CsAL1, A Gene Associated with Early and Late Spring Tip Emergence in Tea Plants [J]. Journal of Tea Science, 2024, 44(2): 207-218. |
[8] | LI Qinghui, LI Rui, WEN Xiaoju, NI Dejiang, WANG Mingle, CHEN Yuqiong. Selection and Validation of Internal Reference Genes for qRT-PCR Analysis under Fluoride Stress in Camellia sinensis Leaves [J]. Journal of Tea Science, 2024, 44(1): 27-36. |
[9] | WU Shuhua, MAO Kaiquan, CHEN Jiaming, LI Jianlong, XUE Jinghua, ZENG Lanting, YANG Yuhua, GU Dachuan. Study on the Influence of Tea Green Leafhopper Infestation on the Tenderness of Fresh Tea Leaves and the Extraction Rate of Metabolites Related to Oolong Tea Quality [J]. Journal of Tea Science, 2023, 43(6): 806-822. |
[10] | MAO Chun, HE Ji, WEN Xuefeng, WU Chuanmei, YI Chengxi, LIAN Jianhong, GUO Wenmin. Advances in the Application of Metabolomics in the Study of Physiological and Biochemical Metabolism of Tea Plants [Camellia sinensis (L.) O. Kuntze] [J]. Journal of Tea Science, 2023, 43(5): 607-620. |
[11] | LI Congcong, WANG Haoqian, YE Yufan, CHEN Yao, REN Hengze, LI Yuteng, HAO Xinyuan, WANG Xinchao, CAO Hongli, YUE Chuan. Study on the Regulation Roles of Plant Hormones on the Growth and Development of Tea Shoots in Spring [J]. Journal of Tea Science, 2023, 43(3): 335-348. |
[12] | MENG Rongjun, CHEN Liang, XU Yuan, LIN Wei, ZHOU Qiwei, XIE Yilin, LAI Dingqing, LAI Jiaye. Genetic Diversity Analysis of Tea Genetic Resources in Sanjiang, Guangxi [J]. Journal of Tea Science, 2023, 43(2): 147-158. |
[13] | CHEN Zhenyan, ZHANG Xiangqin, CHEN Lan, XIE Siyi, LIU Shuoqian, TIAN Na. Identification and Expression Pattern Analysis of NUDIX Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2023, 43(2): 159-172. |
[14] | HU Zhihang, QIN Zhiyuan, LI Jingwen, YANG Ni, CHEN Yi, LI Tong, ZHUANG Jing. Identification of the Light-harvesting Chlorophyll-protein Complex Gene CsLhcb2 and Its Response to Low Temperature in Tea Plants [J]. Journal of Tea Science, 2023, 43(2): 183-193. |
[15] | DENG Xiaoxu, XIE Xia, PAN Yamei, ZHAO Fenghua, JIANG Shuangfeng, XU Wen, ZHANG Jie, SUN Runhong, XIA Mingcong, YANG Lirong. Screening and Identification of Strains against Fusarium solani Isolated from Camellia sinensis and Analysis of its Biocontrol and Growth Promotion Characteristics [J]. Journal of Tea Science, 2023, 43(1): 67-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|