Journal of Tea Science ›› 2019, Vol. 39 ›› Issue (1): 1-10.doi: 10.13305/j.cnki.jts.2019.01.001
LIU Ying1,2, HAO Xinyuan2, ZHENG Mengxia2, WANG Xinchao2, XIAO Bin1,*, YANG Yajun1,2,*
Revised:
2018-07-03
Online:
2019-02-15
Published:
2019-07-17
CLC Number:
LIU Ying, HAO Xinyuan, ZHENG Mengxia, WANG Xinchao, XIAO Bin, YANG Yajun. Recent Advances on Tea Flowering Mechanisms[J]. Journal of Tea Science, 2019, 39(1): 1-10.
[1] Boss PK, Bastow RM, Mylne JS, et al.Multiple pathways in the decision to flower: enabling, promoting, and resetting[J]. Plant Cell, 2004, 16(Suppl): S18-S31. [2] Wang JW, Czech B, Weigel D.MiR156-regulated SPL transcription factors define an endogenous flowering pathway in [3] Valverde F, Mouradov A, Soppe W, et al.Photoreceptor regulation of CONSTANS protein in photoperiodic flowering[J]. Science, 2004, 303(5660): 1003. [4] Garner WW, Allard HA.Effect of the relative length of day and night and other factors of the environment on growth and reproduction in PLANTS1[J]. Mon Weather Rev, 2009, 48(2): 157-158. [5] Corbesier L, Vincent C, Jang S, et al.FT protein movement contributes to long-distance signaling in floral induction of [6] Simpson GG, Dean C.The Rosetta stone of flowering time[J]. Genome Biol, 2002, 1(5): 181-200. [7] Hemming MN, Peacock WJ, Dennis ES, et al.Low-temperature and daylength cues are integrated to regulate [8] Kim JJ, Lee JH, Kim W, et al.The [9] Kumimoto R, Adam L, Hymus G, et al.The nuclear factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis[J]. Planta, 2008, 228(5): 709-723. [10] Kumimoto RW, Zhang Y, Siefers N, et al.NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod‐dependent flowering in [11] Siriwardana CL, Gnesutta N, Kumimoto RW, et al.Nuclear factor Y, Subunit A (NF-YA) proteins positively regulate flowering and act through [12] Suárezlópez P, Wheatley K, Robson F, et al.CONSTANS mediates between the circadian clock and the control of flowering in [13] Nelson DC, Lasswell J, Rogg LE, et al. [14] Mizoguchi T, Wright L, Fujiwara S, et al.Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in [15] Fornara F, Panigrahi KC, Gissot L, et al. [16] Jung J, Seo Y, Seo PJ, et al.The [17] 郝心愿. 茶树越冬芽休眠的分子机理研究[D]. 杨凌: 西北农林科技大学, 2015. [18] Wei C, Yang H, Wang S, et al.Draft genome sequence of [19] 李娅莉. 不同光周期对山茶花成花影响的研究[D]. 雅安: 四川农业大学, 2005. [20] Finnegan EJ, Genger RK, Kovac K, et al.DNA methylation and the promotion of flowering by vernalization[J]. Proc Natl Acad Sci USA, 1998, 95(10): 5824-5829. [21] Koornneef M, Alonsoblanco C, Peeters AJ, et al.Genetic control of flowering time in [22] Gendall AR, Levy YY, Wilson A, et al.The [23] Bastow R, Mylne JS, Lister, C, et al.Vernalization requires epigenetic silencing of [24] Sung S, Amasino RM.Vernalization in [25] Sung S, Amasino RM.Vernalization and epigenetics: how plants remember winter[J]. Curr Opin Plant Biol, 2004, 7(1): 4-10. [26] Tabuenca MC.Winter chilling requirements of European plum varieties ( [27] Ghrab M, Mimoun MB, Masmoudi MM, et al.Chilling trends in a warm production area and their impact on flowering and fruiting of peach trees[J]. Sci Hortic, 2014, 178, 87-94. [28] Marquardt S, Boss PK, Hadfield J, et al.Additional targets of the [29] Michaels SD, Amasino RM.Loss of [30] Bäurle I, Smith L, Baulcombe DC, et al.Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing[J]. Science, 2007, 318(5847): 109-112. [31] Sonmez C, Bäurle I, Magusin A, et al.RNA 3' processing functions of [32] Liu F, Quesada V, Crevillen P, et al.The [33] He Y, Michaels SD, Amasino RM.Regulation of flowering time by histone acetylation in [34] AusãN I, Alonso-Blanco C, Jarillo JA, et al(2004). Regulation of flowering time by FVE, a retinoblastoma-associated protein[J]. Nat Genet, 2004, 36(2): 162-166. [35] Lee I, Aukerman MJ, Gore SL, et al.Isolation of [36] Aukerman MJ, Lee I, Weigel D, et al.The Arabidopsis flowering-time gene [37] Lim MH, Kim J, Kim YS, et al.A new Arabidopsis gene, [38] Mockler TC, Yu X, Shalitin D, et al.Regulation of flowering time in [39] 李合生. 现代植物生理学[M]. 3版. 北京: 高等教育出版社, 2006: 231. [40] Monselise SP.Recent advances in the understanding of flower formation in fruit trees and its hormonal control[J]. Acta Hortic, 1973, 34: 157-166. [41] 黄亚辉, 粟本文, 曾贞, 等. 外源激素调控茶树成花的研究[J]. 茶叶通讯, 2002 (4): 3-6. [42] 岳川, 曾建明, 曹红利, 等. 茶树赤霉素受体基因 [43] Thomas SG, Hu J, Dill A, et al.DELLA proteins and gibberellin-regulated seed germination and floral development in [44] Pysh LD, Wysockadiller JW, Camilleri C, et al.The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the [45] 虞莎, 王佳伟. miR156介导的高等植物年龄途径研究进展[J]. 科学通报, 2014, 59(15): 1398-1404. [46] Wang JW.Regulation of flowering time by the miR156-mediated age pathway[J]. J Exp Bot, 2014, 65(17): 4723-4730. [47] Chen XB, Zhang ZL, Liu DM, et al. [48] Preston JC, Hileman LC.Functional evolution in the plant [49] Wu G, Poethig RS.Temporal regulation of shoot development in [50] Wei Q, Ma C, Xu Y, et al.Control of chrysanthemum flowering through integration with an aging pathway[J]. Nat Commun, 2017, 8(1): 829. DOI: 10.1038/s41467- 017-00812-0. [51] 刘亚芹, 田坤红, 孙琪璐, 等. 茶树miR156a靶基因 [52] Borner R, Kampmann G, Chandler J, et al.A MADS domain gene involved in the transition to flowering in [53] Moon J, Suh SS, Lee H, et al.The [54] Jung JH, Ju Y, Seo PJ, et al.The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis[J]. Plant J Cell Mol Biol, 2012, 69(4): 577-588. [55] Tao Z, Shen L, Liu C, et al.Genome-wide identification of [56] Hepworth SR, Valverde F, Ravenscroft D, et al.Antagonistic regulation of flowering-time gene [57] Lee SG, Felker P.Influence of water/heat stress on flowering and fruiting of mesquite ( [58] Corrales AR, Nebauer SG, Carrillo L, et al.Characterization of tomato cycling dof factors reveals conserved and new functions in the control of flowering time and abiotic stress responses[J]. J Exp Bot, 2014, 65(4): 995-1012. [59] Kai F, Dongmei F, Zhaotang D, et al.Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant ( [60] 王常红, 汪东风. 稀土对茶树生殖生长的影响[J]. 茶叶科学, 2000, 20(1): 55-58. [61] 杨亚军. 中国茶树栽培学[M]. 上海: 上海科学技术出版社, 2005: 74. [62] Jia S, Wang Y, Hu J, et al.Mineral and metabolic profiles in tea leaves and flowers during flower development[J]. Plant Physiol Biochem, 2016, 106: 316-326. [63] Liu F, Wang Y, Ding Z, et al.Transcriptomic analysis of flower development in tea [ [64] 江昌俊. 茶树花芽分化和胚胎发育的解剖学研究[D]. 合肥: 安徽农业大学, 1987. [65] 严学成. 茶树形态结构与品质鉴定[M]. 北京: 农业出版社, 1990: 67. [66] 王丽娜, 刘青林. 花序分生组织特性基因 [67] Hao XY, Yang YJ, Yue, C, et al.Comprehensive transcriptome analyses reveal differential gene expression profiles of [68] Liu C, Teo ZWN, Bi Y, et al.A conserved genetic pathway determines inflorescence architecture in [69] 施雁飞. 茶树 [70] Coen ES, Meyerowitz EM.The war of the whorls: genetic interactions controlling flower development[J]. Nature, 1991, 353(6339): 31-37. [71] Colombo L, Franken J, Koetje E, et al.The petunia MADS box gene [72] Rounsley SD, Ditta GS, Yanofsky MF.Diverse roles for MADS box genes in [73] Pelaz S, Ditta GS, Baumann E, et al.B and C floral organ identity functions require [74] 丛楠, 程治军, 万建民. 控制花器官发育的ABCDE模型[J]. 中国农学通报, 2007, 23(7): 124-128. [75] 方成刚, 夏丽飞, 陈林波, 等. 茶树 [76] 吴致君, 卢莉, 黎星辉, 等. 茶树 [77] Hao, XY.Identification and expression analysis of dormancy associated MADS-box and flowering locus T genes in tea plant ( [78] 周坤. 茶树MADS-box家族B类基因 [79] 靳春梅, 周坤, 张今今. 茶树花发育MADS-box转录因子CsGLO1、CsGLO2与CsAG之间的互作关系研究[J]. 植物科学学报, 2017, 35(1): 79-86. [80] 程国山. 茶树 [81] 唐红. 茶树MADS-box家族B类基因 [82] 秋梦颖. 茶树 [83] Zhang CC, Tan LQ, Wang LY, et al.Cloning and characterization of an [84] Fang WP.Differentially expression of [85] 陈暄, 汤茶琴, 邹中伟, 等. 茶树花发育相关的一个钙依赖蛋白激酶基因的克隆与表达分析[J]. 茶叶科学, 2009, 29(1): 47-52. [86] 陈聪, 江昌俊, 叶爱华, 等. 茶树 [87] 余梅, 江昌俊, 叶爱华, 等. 茶树花粉特异蛋白基因 [88] 龚莹, 余梅, 江昌俊, 等. 茶树花粉特异蛋白基因 [89] 余梅, 江昌俊, 房婉萍, 等. 茶树花蕾14-3-3蛋白基因的分子克隆及差异表达分析[J]. 中国农业科学, 2008, 41(10): 2983-2991. [90] 叶爱华, 余梅, 朱林, 等. 用cDNA-AFLP及其改进的方法分析茶树花发育过程中的基因表达[J]. 激光生物学报, 2008, 17(6): 733-738. [91] 韩兴杰, 徐玲玲, 廖亮, 等. 茶树 [92] 丁菲, 庞磊, 李叶云, 等. 茶树海藻糖-6-磷酸合成酶基因( [93] 郝心愿, 曹红利, 杨亚军, 等. 茶树生长素响应因子基因 [94] 李梅, 陈林波, 田易萍, 等. 雌蕊缺失茶树花3个发育期的数字基因表达谱分析[J]. 茶叶科学, 2017, 37(1): 97-107. |
[1] | WANG Yingzi, LI Yinhua, CHEN Jinhua, LIU Zhonghua, HUANG Jian'an. Effects of Exogenous Nitric Oxide on Physiological Characteristics of Tea Plants Under Cold Stress [J]. Journal of Tea Science, 2019, 39(3): 335-341. |
[2] | LEI Lei, WANG Lu, YAO Lina, HAO Xinyuan, ZENG Jianming, DING Changqing, WANG Xinchao, YANG Yajun. Identification and Expression Analysis of Calcium-dependent Protein Kinase CsCDPK17 in Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2019, 39(3): 267-279. |
[3] | LIU Guanhua, YANG Mei, FU Jianyu, . Cloning and Functional Analysis of CsLCYb and CsLCYe for Carotene Biosynthesis in Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2019, 39(3): 257-266. |
[4] | WANG Junya, CHEN Wei, LIU Dingding, CHEN Liang, YAO Mingzhe, MA Chunlei. The Transcriptome Analysis of Different Tea Cultivars in Response to the Spring Cold Spells [J]. Journal of Tea Science, 2019, 39(2): 181-192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|