Journal of Tea Science ›› 2017, Vol. 37 ›› Issue (2): 149-159.
Previous Articles Next Articles
JI Zhifang1, GAN Yudi1, CHEN Changsong2, YANG Dingjun1, SUN Kang1, LI Xinghui1, CHEN Xuan1,*
Received:
2017-02-14
Revised:
2017-02-22
Online:
2017-04-15
Published:
2019-08-22
CLC Number:
JI Zhifang, GAN Yudi, CHEN Changsong, YANG Dingjun, SUN Kang, LI Xinghui, CHEN Xuan. Cloning and Expression Analysis of Phosphoenolpyruvate Transporter Gene CsPPT2 in Tea Plant(Camellia sinensis)[J]. Journal of Tea Science, 2017, 37(2): 149-159.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Fischer K, Kammerer B, Gutensohn M, et al.A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter[J]. Plant Cell, 1997, 9: 453-462. |
[2] | Voll L, Husler R E, Hecker R, et al.The phenotype of the Arabidopsis cue1 mutant is not simply caused by a general restriction of the shikimate pathway[J]. Plant Journal, 2003, 36: 301-317. |
[3] | Kerbarh O, Bulloch E M M, Payne R J, et al. Mechanistic and inhibition studies of chorismate-utilizing enzymes[J]. Biochemical Society Transactions, 2005, 33: 763-766. |
[4] | Li H, Culligan K, Dixon RA, et al.Expression of the functional mature chloroplast triose phosphate translocator in yeast internal membranes and purification of the histidine-tagged proteion by a single metalaffinity chromatography step[J]. Proc Natl Acad Sci, 1993, 90: 2155-2159. |
[5] | Streatfield SJ, Weber A, Kinsman EA, et al.The phosphoenolpyruvate/phosphater translocator is required for phenolic metabolism, plastid cell development and plastid-dependent nuclear gene expression[J]. Plant Cell, 1999, 11: 1609-1621. |
[6] | Knappe S, Flugge UI, Fischer K.Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site[J]. 2003, 131(3): 1178-1190. |
[7] | Knappe S, Löttgert T, Schneider A, et al.Characterization of two functional phosphoenolpyruvate/phosphate translocator (PPT) genes in Arabidopsis-AtPPT1 may be involved in the provision of signals for correct mesophyll development[J]. The Plant Journal, 2003, 36(3): 411-420. |
[8] | Staehr P, Löttgert T, Christmann A, et al.Reticulate leaves and stunted roots are independent phenotypes pointing at opposite roles of the phosphoenolpyruvate/phosphate translocator defective in cue1 in the plastids of both organs[J]. Front Plant Sci, 2014, 5: 126. |
[9] | 杨坤, 吴学龙, 郎春秀, 等. 甘蓝型油菜PEP转运子BnPPT1基因的克隆、序列分析和表达模式[J]. 浙江农业学报, 2011, 23(1): 1-7. |
[10] | 吴学龙. PPT1基因调控植物生长发育的研究及叶脉特异表达增强子的分离应用[D]. 杭州: 浙江大学, 2013: 12-131. |
[11] | 成浩, 李素芳, 陈明, 等. 安吉白茶特异性状的生理生化本质[J]. 茶叶科学, 1999, 19(2): 87-92. |
[12] | 李素芳, 成浩, 虞富莲, 等. 安吉白茶阶段性返白过程中氨基酸的变化[J]. 茶叶科学, 1996, 16(2): 153-154. |
[13] | 李素芳, 陈树尧, 成浩. 茶树阶段性返白现象的初步研究[J]. 中国茶叶, 1994, 16(2): 26-27. |
[14] | 赵真, 陈暄, 王明乐, 等. 茶树磷酸烯醇式丙酮酸转运子基因CsPPT的克隆与表达分析[J]. 茶叶科学, 2015, 35(5): 491-500. |
[15] | 孙美莲, 王云生, 杨冬青, 等. 茶树实时荧光定量PCR分析中内参基因的选择[J]. 植物学报, 2010, 45(5): 579-587. |
[16] | Bagge P, Larsson C.Biosynthesis of aromatic amino acids by highly purified spinach chloroplasts-Compartmentation and regulation of the reactions[J]. Physiol Plantarum, 1986, 68(4): 641-647. |
[17] | Van Der Straeten D, Rodrigues-Pousada RA, Goodman HM, et al. Plant enolase: Gene structure, expression and evolution[J]. Plant Cell, 1991, 3: 719-735. |
[18] | Journet EP, Douce R.Enzymic capacities of purified cauliflower bud plastids for lipidsynthesis and carbohydrate metabolism[J]. Plant Physiol, 1985, 79: 458-467. |
[19] | Schulze-Siebert D, Heineke D, Scharf H, et al.Pyruvate-derived amino acids in spinach chloroplasts: Synthesis and regulation during photosynthetic carbon metabolism[J]. Plant Physiol, 1984, 76: 465-471. |
[20] | Prabhaka V, Löttgert T, Gigolashvili T, et al.Molecular and functional characterization of the plastid-localized Phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana[J]. FEBSLet, 2009, 583: 983-991. |
[21] | Li HM, Culligan K, Dixon RA, et al.CUE1: a mesophyll cell-specific positive regulator of light-controlled gene expression in Arabidopsis[J]. Plant Cell, 1995, 7: 1599-1610. |
[1] | GUO Yongchun, WANG Pengjie, CHEN Di, ZHENG Yucheng, CHEN Xuejin, YE Naixing. Genome-wide Identification and Expression Analysis of SRO Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2019, 39(04): 392-402. |
[2] | LIU Sai, LIU Shuoqian, LONG Jinhua, WU Dunchao, CHEN Yuhong, LIU Liping, LIU Zhonghua, TIAN Na. Functional Analysis of Glutathione Peroxidase Encoding Gene CsGPX1 in Camellia sinensis [J]. Journal of Tea Science, 2019, 39(04): 382-391. |
[3] | LI Qin, CHENG Xiaomei, LI Yongdi, YANG Peid, HUANG Jian'an, LIU Zhonghua. Analysis of the Chloroplast Proteome Difference of ‘Baiye 1’ [Camellia sinensis (L.) O Kuntze] during Periodic Albinism [J]. Journal of Tea Science, 2019, 39(03): 325-334. |
[4] | GUO Lingling, ZHANG Fen, ZHANG Yazhen, CHENG Hao, WEI Kang, RUAN Li, WU Liyun, WANG Liyuan. Molecular Cloning and Expression Analysis of CsLHTs Gene Subfamily in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2019, 39(03): 280-288. |
[5] | LEI Lei, WANG Lu, YAO Lina, HAO Xinyuan, ZENG Jianming, DING Changqing, WANG Xinchao, YANG Yajun. Identification and Expression Analysis of Calcium-dependent Protein Kinase CsCDPK17 in Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2019, 39(03): 267-279. |
[6] | TANG Dandan, LIU Meiya, ZHANG Qunfeng, SHI Yuanzhi, MA Lifeng, RUAN Jianyun. Effects of Nitrogen Form and Root-zone pH on Nutrient Uptake and Concentrations of Organic Anions in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2019, 39(02): 159-170. |
[7] | KONG Lei, ZHU Xiangxiang, WANG Yiwei, XIE Xiaofang, JIANG Changjun, LI Yeyun. Identification and Expression Analysis of Tea Plant (Camellia sinesis) miR164a and Its Target Gene [J]. Journal of Tea Science, 2018, 38(6): 547-558. |
[8] | CHEN Jiangfei, YU Jinming, YANG Jiankun, YU Youben, XIAO Bin, YANG Yajun, WANG Weidong. Cloning and Expression Analysis of Na+/H+ Antiporter Gene CsNHX1 and CsNHX2 in Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2018, 38(6): 559-568. |
[9] | ZHENG Shizhong, JIANG Shengtao, LIU Wei, CHEN Meixia, LIN Yuling, LAI Zhongxiong, LIN Jinke. Cloning and Functional Analysis of the CsMYB Promoter In Tea Plant (Camellia sinensis L.) [J]. Journal of Tea Science, 2018, 38(6): 580-588. |
[10] | PANG Dandan, ZHANG Fen, ZHANG Yazhen, WEI Kang, WANG Liyuan, CHENG Hao. Research Advance on Biosynthesis, Regulation and Function of Anthocyanins in Tea Plant [J]. Journal of Tea Science, 2018, 38(6): 606-614. |
[11] | SHAN Ruiyang, LIN Zhenghe, CHEN Zhihui, ZHONG Qiusheng, YOU Xiaomei, CHEN Changsong. Molecular Cloning and Expression Analysis of Cytochrome P450 CYP71A26 and CYP71B34 Genes in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2018, 38(5): 450-460. |
[12] | GAN Yudi, SUN Kang, LI Huijuan, DU Zhongying, ZHAO Zhen, PANG Xing, LI Xinghui, CHEN Xuan. Effect of Two Prokaryotic Expressed Vectors on the Activity of PPO from Camellia sinensis [J]. Journal of Tea Science, 2018, 38(4): 396-405. |
[13] | RAN Wei, ZHANG Jin, ZHANG Xin, LIN Songbo, SUN Xiaoling. Infestation of Ectropis obliqua Affects the Catechin Metabolism in Tea Plants [J]. Journal of Tea Science, 2018, 38(2): 133-139. |
[14] | YE Xiaoli, PAN Junting, ZHU Jiaojiao, SHU Zaifa, CUI Chuanlei, XING Anqi, NONG Shouhua, ZHU Xujun, FANG Wanping, WANG Yuhua. Cloning and Expression Analysis of Small GTPase (CsRAC5) under Cold Stress in Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2018, 38(2): 146-154. |
[15] | ZHANG Yongheng, WANG Siqing, CHEN Jiangfei, WANG Weidong, ZHOU Tianshan, XIAO Bin, YANG Yajun, YU Youben. Cloning and Expression Analysis of CsSnRK2.1 and CsSnRK2.2 Genes in Tea Plant (Camellia sinensis) under Abiotic Stress [J]. Journal of Tea Science, 2018, 38(2): 183-192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|