[1] Wu C Y, Tan L, Hooren V M, et al.Arabidopsis EXO70A1 recruits Patellin3 to the cell membrane independent of its role as an exocyst subunit[J]. Journal of Integrative Plant Biology, 2017, 59(12): 851-865.
[2] Zhou H P, Duan H Q, Liu Y H, et al.Patellin protein family functions in plant development and stress response[J]. Journal of Plant Physiology, 2019, 234: 94-97.
[3] 李琼, 王学路, 苏伟. 拟南芥Patellin2相互作用蛋白的筛选及鉴定[J]. 复旦学报(自然科学版), 2016, 55(5): 614-622.
Li Q, Wang X L, Su W.Identification and validation of theinteraction between patellin2 and CDKB2;2 in Arabidopsis thaliana[J]. Journal of Fudan University (Natural Science), 2016, 55(5): 614-622.
[4] Heide O M.Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species[J]. Scientia Horticulturae, 2008, 115(3): 309-314.
[5] Heide O M.Temperature rather than photoperiod controls growth cessation and dormancy in Sorbus species[J]. Journal of Experimental Botany, 2011, 62(15): 5397-5404.
[6] Welling A, Palva E T.Molecular control of cold acclimation in trees[J]. Physiologia Plantarum, 2006, 127(2): 167-181.
[7] Petermant T K, Ohol Y M, Mcreynolds L J, et al.Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides[J]. Plant Physiology, 2004, 136(2): 3080-3094.
[8] Montag K, Hornbergs J, Ivanov R, et al.Phylogenetic analysis of plant multi-domain SEC14-like phosphatidylinositol transfer proteins and structure: function properties of PATELLIN2[J]. Plant Molecular Biology, 2020, 104: 665-678.
[9] Anantharaman V, Aravind L.The GOLD domain, a novel protein module involved in Golgi function and secretion[J]. Genome Biology, 2002, 3(5): 1-7.
[10] Sha A H, Qi Y N, Shan Z H, et al.Identifying patellin-like genes in Glycine max and elucidating their response to phosphorus starvation[J]. Acta Physiologiae Plantarum, 2016, 38: 138. doi: 10.1007/s11738-016-2162-2.
[11] Melicher P, Dvořák P, Řehák J, et al.Methyl viologen-induced changes in the Arabidopsis proteome implicate PATELLIN 4 in oxidative stress responses[J]. Journal of Experimental Botany, 2024, 75(1): 405-421.
[12] Peiro A, Izquierdo-garcia A C, Sanchez-navarro J A, et al. Patellins 3 and 6, two members of the plant patellin family, interact with the movement protein of Alfalfa mosaic virus and interfere with viral movement[J]. Molecular Plant Pathology, 2014, 15(9): 881-891.
[13] Ariel F D, Manavella P A, Dezar C A, et al.The true story of the HD-Zip family[J]. Trends in Plant Science, 2007, 12(9): 419-426.
[14] Henriksson E, Olsson A S B, Johannesson H, et al. Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships[J]. Plant Physiology, 2005, 139(1): 509-518.
[15] Zhang Y, Wan S Q, Xing B C, et al.An HD-Zip transcription factor ArHDZ22 regulates plant height and decreases salt tolerance in Anoectochilus roxburghii[J]. Industrial Crops & Products, 2025, 223: 120251. doi: 10.1016/j.indcrop.2024.120251.
[16] 沈威. 茶树中与逆境相关HD-Zip转录因子的鉴定和功能初步分析[D]. 南京: 南京农业大学, 2019.
Shen W.Identification and preliminary functional analysis of HD-Zip transcription factors relatedin tea plant[D]. Nanjing: Nanjing Agricultural University, 2019.
[17] Shen J Z, Wang Y, Chen C S, et al.Metabolite profiling of tea (Camellia sinensis L.) leaves in winter[J]. Scientia Horticulturae, 2015, 192: 1-9.
[18] Wu Z J, Li X H, Liu Z W, et al.Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis)[J]. Functional & Integrative Genomics, 2015, 15(6): 741-752.
[19] Liu Z H, Gao L Z, Chen Z M, et al.Leading progress on genomics, health benefits and utilization of tea resources in China[J]. Nature, 2019, 566(7742): s15-s19.
[20] 鲁薇, 邬晓龙, 胡贤春, 等. 茶树接种AM真菌在干旱胁迫下的生理响应[J]. 茶叶科学, 2024, 44(5): 718-734.
Lu W, Wu X L, Hu X C, et al.Physiological response of tea plants inoculated with Arbuscular mycorrhizal fungi under drought stress[J]. Journal of Tea Science, 2024, 44(5): 718-734.
[21] 余素红, 洪永聪, 曾明森, 等. 分子生物学技术在茶树科学研究中的应用与展望[J]. 茶叶科学技术, 2009(2): 5-10.
Yu S H, Hong Y C, Zeng M S, et al.Application and prospects of molecular biological techniques in scientific research on tea plants[J]. Chaye Kexue Jishu, 2009(2): 5-10.
[22] 李力, 罗盛财, 王飞权, 等. 基于GBS-SNP的武夷茶树(Camellia sinensis, Synonym: Thea bohea L.)遗传分析及标记开发[J]. 茶叶科学, 2023, 43(3): 310-324.
Li L, Luo S C, Wang F Q, et al.Genetic analysis and marker development for Wuyi tea (Camellia sinensis, Synonym: Thea bohea L.) based on GBS-SNP[J]. Journal of Tea Science, 2023, 43(3): 310-324.
[23] 王新超, 马春雷, 杨亚军, 等. 茶树细胞周期蛋白依赖激酶(CsCDK)基因cDNA全长克隆与分析[J]. 园艺学报, 2012, 39(2): 333-342.
Wang X C, Ma C L, Yang Y J, et al.Full-length cDNA cloning and analysis of tea plant cyclin-dependent kinase (CsCDK) gene[J]. Acta Horticulturae Sinica, 2012, 39(2): 333-342.
[24] Tejos R, Rodriguez-Furlán C, Adamowski M, et al. PATELLINS are regulators of auxin-mediated PIN1 relocation and plant development in Arabidopsis thaliana[J]. Journal of Cell Science, 2018, 131(2): jcs204198. doi: 10.1242/jcs.204198.
[25] Hussain S, Niu Q F, Qian M J, et al.Genome-wide identification, characterization, and expression analysis of the dehydrin gene family in Asian pear (Pyrus pyrifolia)[J]. Tree Genetics & Genomes, 2015, 11: 110. doi: 10.1007/s11295-015-0938-y.
[26] Zhao Y X, Medrano L, Ohashi K, et al.HANABA TARANU is a GATA transcription factor that regulates shoot apical meristem and flower development in Arabidopsis[J]. The Plant Cell, 2004, 16(10): 2586-2600.
[27] Wang R J, Gao X F, Yang J, et al.Genome-wide association study to identify favorable SNP allelic variations and candidate genes that control the timing of spring bud flush of tea (Camellia sinensis) using SLAF-seq[J]. Journal of Agricultural and Food Chemistry, 2019, 67(37): 10380-10391.
[28] Yan Y L, Jeong S J, Park C E, et al.Effects of extreme temperature on China’s tea production[J]. Environmental Research Letters, 2021, 16(4): 044040. doi: 10.1088/1748-9326/abede6.
[29] Sharif R, Raza A, Chen P, et al.HD-ZIP gene family: potential roles in improving plant growth and regulating stress-responsive mechanisms in plants[J]. Genes, 2021, 12(8): 1256. doi: 10.3390/genes12081256.
[30] Ramachandran P, Carlsbecker A, Etchells J P.Class III HD-ZIPs govern vascular cell fate: an HD view on patterning and differentiation[J]. Journal of Experimental Botany, 2017, 68(1): 55-69.
[31] Elhiti M, Stasolla C.Structure and function of homodomain-leucine zipper (HD-Zip) proteins[J]. Plant Signaling & Behavior, 2009, 4(2): 86-88.
[32] 王宏, 李刚波, 张大勇, 等. 植物HD-Zip转录因子的生物学功能[J]. 遗传, 2013, 35(10): 1179-1188.
Wang H, Li G B, Zhang D Y, et al.Biological functions of plant HD-Zip transcription factors[J]. Hereditas (Beijing), 2013, 35(10): 1179-1188. |