






茶叶科学 ›› 2014, Vol. 34 ›› Issue (2): 111-121.doi: 10.13305/j.cnki.jts.2014.02.001
• • 下一篇
刘声传1,2, 陈亮1,*
收稿日期:2013-07-11
修回日期:2013-09-12
出版日期:2014-04-15
发布日期:2019-09-03
通讯作者:
*liangchen@mail.tricaas.com
作者简介:刘声传(1981― ),男,贵州人,博士研究生,主要从事茶树分子遗传学研究。
基金资助:LIU Shengchuan1,2, CHEN Liang1,*
Received:2013-07-11
Revised:2013-09-12
Online:2014-04-15
Published:2019-09-03
摘要: 干旱是影响茶叶生产的主要气象灾害之一。茶树对干旱胁迫及随后复水的响应非常复杂,探究茶树耐旱机理,对于发掘利用耐旱节水基因资源、提高耐旱性和水分利用效率、发展节水抗旱栽培、减轻旱灾损失具有重要意义。本文简述了干旱对茶树生长发育、产量和品质的影响,述评了当前茶树响应干旱胁迫和复水机理的研究动态,概述了茶树节水抗旱栽培和灾后恢复技术,并展望了今后研究重点。
中图分类号:
刘声传, 陈亮. 茶树耐旱机理及抗旱节水研究进展[J]. 茶叶科学, 2014, 34(2): 111-121. doi: 10.13305/j.cnki.jts.2014.02.001.
LIU Shengchuan, CHEN Liang. Research Advances on the Drought-Resistance Mechanism and Strategy of Tea Plant[J]. Journal of Tea Science, 2014, 34(2): 111-121. doi: 10.13305/j.cnki.jts.2014.02.001.
| [1] | Gupta S, Bharalee R, Bhorali P, et al. Identification of drought tolerant progenies in tea by gene expression analysis[J]. Functional & Integrative Genomics, 2012, 12(3): 543-563. |
| [2] | Sharma P, Kumar S.Differential display-mediated identification of three drought-responsive expressed sequence tags in tea [Camellia sinensis (L.) O. Kuntze][J]. Journal of Biosciences, 2005, 30(2): 231-235. |
| [3] | Farooq M, Hussain M, Wahid A, et al. Drought Stress in Plants: An Overview[M]//Plant Responses to Drought Stress. Springer Berlin Heidelberg, 2012: 1-33. |
| [4] | 马蕊. 云南普洱茶大幅减产干旱导致云南茶价上涨[J]. 中国茶叶, 2010, 32(4): 20. |
| [5] | 伍崇岳. 干旱致湖南夏茶减产三成[J]. 茶博览, 2011(6): 29. |
| [6] | Cheruiyot E K, Mumera L M, Ngetich W K, et al. High fertilizer rates increase susceptibility of tea to water stress[J]. Journal of Plant Nutrition, 2009, 33(1): 115-129. |
| [7] | Upadhyaya H, Dutta B K, Sahoo L, et al. Comparative effect of Ca, K, Mn and B on post-drought stress recovery in tea [Camellia sinensis (L.) O Kuntze][J]. American Journal of Plant Sciences, 2012, 3(4): 443-460. |
| [8] | 魏鹏. 茶树抗旱性部分生理生化指标的研究[D]. 重庆: 西南农业大学, 2003. |
| [9] | 刘玉英, 徐泽, 罗云米. 干旱胁迫对不同茶树品种生理特性的影响[J]. 西南农业学报, 2010, 23(2): 387-389. |
| [10] | 杨华, 唐茜, 黄毅, 等. 名山白毫对干旱胁迫的生理生态响应[J]. 西南农业学报, 2010, 23(5): 1497-1503. |
| [11] | Cheruiyot E K, Mumera L M, Ngetich W K, et al. Polyphenols as potential indicators for drought tolerance in tea (Camellia sinensis L.)[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(9): 2190-2197. |
| [12] | Kato M, Kitao N, Ishida M, et al. Expression for caffeine biosynthesis and related enzymes in Camellia sinensis[J]. Zeitschrift Fur Naturforschung C, 2010, 65(3): 245-256. |
| [13] | 柯玉琴, 庄重光, 何华勤, 等. 不同灌溉处理对铁观音茶树光合作用的影响[J]. 应用生态学报, 2008, 19(10): 2132-2136. |
| [14] | 曹潘荣, 刘春燕, 刘克斌, 等. 水分胁迫诱导岭头单枞茶香气的形成研究[J]. 华南农业大学学报, 2006, 27(1): 17-20. |
| [15] | Chen X H, Zhuang C G, He Y F, et al. Photosynthesis, yield, and chemical composition of Tieguanyin tea plants [Camellia sinensis (L.) O. Kuntze] in response to irrigation treatments[J]. Agricultural Water Management, 2010, 97(3): 419-425. |
| [16] | Chaves M M, Maroco J P, Pereira J S.Understanding plant responses to drought—from genes to the whole plant[J]. Functional Plant Biology, 2003, 30(3): 239-264. |
| [17] | Xu ZZ, Zhou GS, Shimizu H.Plant responses to drought and rewatering[J]. Plant Signaling & Behavior, 2010, 5(6): 649-654. |
| [18] | Kantar M, Lucas S J, Budak H.Drought stress: molecular genetics and genomics approaches[J]. Advances in Botanical Research, 2011(57): 445-493. |
| [19] | Upadhyaya H, Panda S K.Responses of Camellia sinensis to drought and rehydration[J]. Biologia Plantarum, 2004, 48(4): 597-600. |
| [20] | Upadhyaya H, Panda S K, Dutta B K.Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery[J]. Acta Physiologiae Plantarum, 2008, 30(4): 457-468. |
| [21] | 覃秀菊, 李凤英, 何建栋, 等. 广西茶树新品种品系叶片解剖结构特征与特性关系的研究[J]. 中国农学通报, 2009, 25(10): 36-39. |
| [22] | Netto L A, Jayaram K M, Puthur J T.Clonal variation of tea [Camellia sinensis (L.) O. Kuntze] in countering water deficiency[J]. Physiology and Molecular Biology of Plants, 2010, 16(4): 359-367. |
| [23] | 王家顺, 李志友. 干旱胁迫对茶树根系形态特征的影响[J]. 河南农业科学, 2011, 40(9): 55-57. |
| [24] | 杨华. 名山白毫茶树品种对干旱胁迫的生理生态响应[D]. 雅安: 四川农业大学, 2007. |
| [25] | 郝树荣, 郭相平, 王为木, 等. 水稻分蘖期水分胁迫及复水对根系生长的影响[J]. 干旱地区农业研究, 2007, 25(1): 149-152. |
| [26] | 刘锦春, 钟章成. 水分胁迫和复水对石灰岩地区柏木幼苗根系生长的影响[J]. 生态学报, 2009, 29(12): 6439-6445. |
| [27] | Sanders G J, Arndt S K.Osmotic Adjustment Under Drought Conditions[M]//Plant Responses to Drought Stress. Springer Berlin Heidelberg, 2012: 199-229. |
| [28] | 张木清, 陈如凯. 作物抗旱分子生理与遗传改良[M]. 北京: 科学出版社, 2005: 369. |
| [29] | 潘瑞炽. 植物生理学[M]. 北京: 高等教育出版社, 2004: 297. |
| [30] | 刘玉英. 茶树抗旱生理生化机制的研究[D]. 重庆: 西南大学, 2006. |
| [31] | Impa S M, Nadaradjan S, Jagadish S V K. Abiotic Stress Responses in Plants[M]//Drought stress induced reactive oxygen species and anti-oxidants in plants, 2012: 131-147. |
| [32] | Peleg Z, Blumwald E.Hormone balance and abiotic stress tolerance in crop plants[J]. Current Opinion in Plant Biology, 2011, 14(3): 290-295. |
| [33] | 潘根生, 吴伯千, 沈生荣, 等. 水分胁迫过程中茶树新梢内源激素水平的消长及其与耐旱性的关系[J]. 中国农业科学, 1996, 29(5): 9-15. |
| [34] | 刘长海, 周莎莎, 邹养军, 等. 干旱胁迫条件下不同抗旱性苹果砧木内源激素含量的变化[J]. 干旱地区农业研究, 2012, 30(5): 94-98. |
| [35] | Dobra J, Motyka V, Dobrev P, et al. Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content[J]. Journal of Plant Physiology, 2010, 167(16): 1360-1370. |
| [36] | 闫映宇, 赵成义, 盛钰, 等. 膜下滴灌对棉花根系、地上部分生物量及产量的影响[J]. 应用生态学报, 2009, 20(4): 970-976. |
| [37] | Reddy A R, Chaitanya K V, Vivekanandan M.Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. Journal of Plant Physiology, 2004, 161(11): 1189-1202. |
| [38] | 郭春芳, 孙云, 张木清. 不同土壤水分对茶树光合作用与水分利用效率的影响[J]. 福建林学院学报, 2008, 28(4): 333-337. |
| [39] | 郭春芳, 孙云, 唐玉海, 等. 水分胁迫对茶树叶片叶绿素荧光特性的影响[J]. 中国生态农业学报, 2009, 17(3): 560-564. |
| [40] | 郭春芳, 孙云, 张木清. 土壤水分胁迫对茶树光合作用——光响应特性的影响[J]. 中国生态农业学报, 2008, 16(6): 1413-1418. |
| [41] | 刘玉英, 易红华, 徐泽. 干旱胁迫对不同茶树品种叶绿素含量的影响[J]. 南方农业, 2007, 1(1): 68-70. |
| [42] | Huang G T, Ma S L, Bai L P, et al. Signal transduction during cold, salt, and drought stresses in plants[J]. Molecular Biology Reports, 2012, 39(2): 969-987. |
| [43] | Chaves M M, Flexas J, Pinheiro C.Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell[J]. Annals of Botany, 2009, 103(4): 446-473. |
| [44] | Grigorova B, Vaseva I, Demirevska K, et al. Combined drought and heat stress in wheat: changes in some heat shock proteins[J]. Biologia Plantarum, 2011, 55(1): 105-111. |
| [45] | Bahrndorff S, Tunnacliffe A, Wise M J, et al. Bioinformatics and protein expression analyses implicate LEA proteins in the drought response of Collembola[J]. Journal of Insect Physiology, 2009, 55(3): 210-217. |
| [46] | Lindemose S, Oshea C, Jensen M K, et al. Structure, function and networks of transcription factors involved in abiotic stress responses[J]. International Journal of Molecular Sciences, 2013, 14(3): 5842-5878. |
| [47] | 唐益苗, 赵昌平, 高世庆, 等. 植物抗旱相关基因研究进展[J]. 麦类作物学报, 2009, 29(1): 166-173. |
| [48] | 林凡云, 胡银岗, 宋国琦, 等. 糜子干旱后复水过程中基因表达谱的初步分析[J]. 西北农林科技大学学报: 自然科学版, 2007, 35(3): 81-85. |
| [49] | 阳文龙. 牛耳草光合作用的脱水保护和复苏机理[D]. 北京: 中国科学院植物研究所, 2002. |
| [50] | 刘玉冰. 荒漠复苏植物红砂抗旱机理的生理生态学特性研究[D]. 兰州: 兰州大学, 2006. |
| [51] | Kim J M, To T K, Ishida J, et al. Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2012, 53(5): 847-856. |
| [52] | Dobra J, Vankova R, Havlova M, et al. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery[J]. Journal of Plant Physiology, 2011, 168(13): 1588-1597. |
| [53] | 孙云南, 陈林波, 夏丽飞, 等. 干旱胁迫下茶树基因表达的AFLP分析[J]. 植物生理学报, 2012, 48(3): 241-246. |
| [54] | Gupta S, Bharalee R, Bhorali P, et al. Molecular analysis of drought tolerance in tea by cDNA-AFLP based transcript profiling[J]. Molecular Biotechnology, 2013, 53(3): 237-248. |
| [55] | Krishnaraj T, Gajjeraman P, Palanisamy S, et al. Identification of differentially expressed genes in dormant (banjhi) bud of tea [Camellia sinensis (L.) O. Kuntze] using subtractive hybridization approach[J]. Plant Physiology and Biochemistry, 2011, 49(6): 565-571. |
| [56] | Das A, Das S, Mondal T K.Identification of differentially expressed gene profiles in young roots of tea [Camellia sinensis (L.) O. Kuntze] subjected to drought stress using suppression subtractive hybridization[J]. Plant Molecular Biology Reporter, 2012, 30(5): 1088-1101. |
| [57] | 陈盛相, 齐桂年, 夏建冰, 等. 茶树在干旱条件下的 mRNA 差异表达[J]. 茶叶科学, 2012, 32(1): 53-58. |
| [58] | Muoki R C, Paul A, Kumar S.A shared response of thaumatin like protein, chitinase, and late embryogenesis abundant protein3 to environmental stresses in tea [Camellia sinensis (L.) O. Kuntze][J]. Functional & Integrative Genomics, 2012, 12(3): 565-571. |
| [59] | Li X W, Feng Z G, Yang H M, et al. A novel cold-regulated gene from Camellia sinensis, CsCOR1, enhances salt-and dehydration-tolerance in tobacco[J]. Biochemical and Biophysical Research Communications, 2010, 394(2): 354-359. |
| [60] | Paul A, Muoki R C, Singh K, et al. CsNAM-like protein encodes a nuclear localized protein and responds to varied cues in tea [Camellia sinensis (L.) O. Kuntze][J]. Gene, 2012, 502(1): 69-74. |
| [61] | Rana N K, Mohanpuria P, Yadav S K.Expression of tea cytosolic glutamine synthetase is tissue specific and induced by cadmium and salt stress[J]. Biologia Plantarum, 2008, 52(2): 361-364. |
| [62] | 庄重光. 不同水分处理下铁观音茶树的生理机制及其差异蛋白质组学研究[D]. 福州: 福建农林大学, 2008. |
| [63] | Jeyaramraja P R, Kumar R R, Pius P K, et al. Photoassimilatory and photorespiratory behaviour of certain drought tolerant and susceptible tea clones[J]. Photosynthetica, 2003, 41(4): 579-582. |
| [64] | Mohanpuria P, Yadav S K.Characterization of novel small RNAs from tea (Camellia sinensis L.)[J]. Molecular Biology Reports, 2012, 39(4): 3977-3986. |
| [65] | 杨维时, 江昌俊, 韦胡领, 等. 多抗香茶树品种简介[J]. 中国茶叶, 2009(10): 15. |
| [66] | 郭春芳, 孙云, 陈常颂, 等. 茶树品种光合与水分利用特性比较及聚类分析[J]. 作物学报, 2008, 34(10): 1797-1804. |
| [67] | 陈周一琪, 王志岚. 肯尼亚茶产业与茶树资源育种研究[J]. 中国农学通报, 2012, 28(19): 97-103. |
| [68] | Bhattacharya A, Saini U, Joshi R, et al. Osmotin-expressing transgenic tea plants have improved stress tolerance and are of higher quality[J]. Transgenic Research, 2013, 22(129): 1-13. |
| [69] | Miransari M.Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress[J]. Plant Biology, 2010, 12(4): 563-569. |
| [70] | 郑芳. 茶树接种VA菌根生理生化特性的研究[D]. 武汉:华中农业大学, 2010. |
| [71] | 彭晚霞, 宋同清, 肖润林, 等. 覆盖与间作对亚热带丘陵茶园土壤水分供应的调控效果[J]. 水土保持学报, 2005, 19(6): 97-101. |
| [72] | Kigalu J M.Effects of planting density and drought on the productivity of tea clones (Camellia sinensis L.): Yield responses[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(15): 1098-1106. |
| [73] | 单武雄, 罗文, 肖润林, 等. 连续5年施菜籽饼肥和稻草覆盖对茶园土壤生态系统的影响[J]. 中国生态农业学报, 2010, 18(3): 472-476. |
| [74] | Upadhyaya H, Dutta B K, Panda S K.Zinc modulates drought induced biochemical damages in tea [Camellia sinensis (L) O Kuntze][J]. Journal of Agricultural and Food Chemistry, 2013, 61(27): 6660-6670. |
| [75] | 吕文, 杨桂山, 万荣荣, 等. 太湖流域西部丘陵茶园修剪前后蒸散速率的比较分析[J]. 中国生态农业学报, 2013, 21(2): 184-191. |
| [76] | 汪汇海, 沙丽清, 杨效东. 稻秸覆盖对有机茶园土壤生态环境影响的研究[J]. 中国生态农业学报, 2006, 14(4): 65-67. |
| [77] | 张蕊, 白岗栓. 保水剂在农业生产中的应用及发展前景[J]. 农学学报, 2012, 2(7): 37-42. |
| [78] | 赵霞, 黄瑞冬, 李潮海, 等. 农艺措施和保水剂对土壤蒸发和夏玉米水分利用效率的影响[J]. 干旱地区农业研究, 2013, 31(1): 101-106. |
| [79] | 李倩, 刘景辉, 张磊, 等. 适当保水剂施用和覆盖促进旱作马铃薯生长发育和产量提高[J]. 农业工程学报, 2013, 29(7): 83-90. |
| [80] | 李荣喜, 胡红莲, 黄永芳, 等. 6 种保水剂对油茶生长和光合特性的影响[J]. 经济林研究, 2012, 30(4): 47-51. |
| [81] | 王志伟, 梁亚春, 刘文平, 等. 叶面喷施FA旱地龙对冬小麦产量和发育期的影响[J]. 干旱地区农业研究, 2009, 27(1): 68-72. |
| [82] | 张国斌, 郁继华, 冯致, 等. NO和ABA对自毒作用下辣椒幼苗光合作用的影响[J]. 中国农业科学, 2013, 46(10): 2076-2084. |
| [83] | Cao M, Liu X, Zhang Y, et al. An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants[J]. Cell Research, 2013, 23(8): 1043-1054. |
| [84] | Upadhyaya H, Panda S K, Dutta B K.CaCl2 improves post-drought recovery potential in [Camellia sinensis (L) O. Kuntze][J]. Plant Cell Reports, 2011, 30(4): 495-503. |
| [1] | 李桂楠, 杨妮, 罗微, 张佳琪, 胡志航, 熊爱生, 郝建楠, 庄静. CsDET2基因的鉴定及其对茶树光周期与非生物胁迫的响应分析[J]. 茶叶科学, 2025, 45(5): 742-756. |
| [2] | 范延艮, 萧越, 孟凡月, 刘文杰, 张颖, 孙平, 张丽霞, 任丽军. 紫芽茶树品种‘紫娟'花青素合成酶基因CsANS1的克隆与功能分析[J]. 茶叶科学, 2025, 45(5): 757-769. |
| [3] | 江丽, 李朵姣, 胡新荣, 沈英姿, 郑寨生, 翁晓星, 刘淑婧, 边晓东, 袁名安, 陈暄. 不同栽培模式对籽叶双收茶树新梢生理生化特性的影响[J]. 茶叶科学, 2025, 45(5): 783-794. |
| [4] | 王开荣, 张龙杰, 梁月荣, 黎晓湘, 郑新强. 茶树叶色鉴别、分类研究与叶色体系构建[J]. 茶叶科学, 2025, 45(5): 795-807. |
| [5] | 周逸德, 陈家霖, 吴俊梅, 赵竑博, 孙彬妹, 刘少群, 郑鹏. 茶树氮代谢基因:环境胁迫适应机制与育种应用研究进展[J]. 茶叶科学, 2025, 45(4): 545-558. |
| [6] | 孙梦真, 胡志航, 杨凯欣, 张佳琪, 张楠, 熊爱生, 刘慧, 庄静. 茶树生物钟CsLUX基因的鉴定及其对光合特性的影响[J]. 茶叶科学, 2025, 45(4): 559-570. |
| [7] | 郑杰, 侯紫妍, 易超, 黄守延, 郭俊齐, 苏会, 周琼琼, 詹强国, 赵仁亮. 水处理工艺对信阳毛尖加工过程中特征香气的影响[J]. 茶叶科学, 2025, 45(4): 687-698. |
| [8] | 徐歆, 李亚奇, 杨亦扬, 徐琪, 钱雪飞, 马春雷, 梅菊芬. AI茶树育种技术:以黄化性状预测为例[J]. 茶叶科学, 2025, 45(3): 393-401. |
| [9] | 翟秀明, 李解, 肖富良, 唐敏, 曾乐武, 侯渝嘉, 汤燚. 茶树茎叶并联变异差异表达基因的WGCNA分析[J]. 茶叶科学, 2025, 45(3): 402-414. |
| [10] | 张辉, 刘丰静, 李慧玲, 李良德, 王庆森, 王定锋. 茶橙瘿螨初期侵染不同抗性茶树品种的代谢组分析[J]. 茶叶科学, 2025, 45(3): 415-426. |
| [11] | 王金波, 谢思艺, 窦祥亚, 申小华, 田娜, 刘硕谦. 茶树PATL基因家族鉴定及CsPATL1上游转录调控分析[J]. 茶叶科学, 2025, 45(2): 191-200. |
| [12] | 郭佳璐, 璩馥榕, 蔡天晨, 赵洋, 杨培迪, 刘勇, 周跃斌, 刘振. 基于农艺性状和SNP分子标记的湖南78份茶树种质资源遗传多样性研究[J]. 茶叶科学, 2025, 45(2): 219-233. |
| [13] | 李悦欣, 鄢东海, 张金峰, 蒲运丹, 李帅, 孟泽洪. 茶树L型凝集素受体激酶基因家族鉴定及其对茶轮斑病和茶炭疽病的响应[J]. 茶叶科学, 2025, 45(2): 253-265. |
| [14] | 杨芳, 江冰冰, 雷金梅, 郭存武, 李丽梅, 徐嘉忆, 王兴华, 袁文侠, 王白娟. 茶树叶斑病病原菌的分离与鉴定[J]. 茶叶科学, 2025, 45(2): 266-272. |
| [15] | 董圆, 张永恒, 肖烨子, 余有本. 茶树BZR1基因家族的鉴定及CsBZR1-5响应干旱胁迫的分子机理研究[J]. 茶叶科学, 2025, 45(1): 15-28. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||
浙公网安备 33019902000101号