茶叶科学 ›› 2014, Vol. 34 ›› Issue (2): 111-121.doi: 10.13305/j.cnki.jts.2014.02.001
• • 下一篇
刘声传1,2, 陈亮1,*
收稿日期:
2013-07-11
修回日期:
2013-09-12
出版日期:
2014-04-15
发布日期:
2019-09-03
通讯作者:
*liangchen@mail.tricaas.com
作者简介:
刘声传(1981― ),男,贵州人,博士研究生,主要从事茶树分子遗传学研究。
基金资助:
LIU Shengchuan1,2, CHEN Liang1,*
Received:
2013-07-11
Revised:
2013-09-12
Online:
2014-04-15
Published:
2019-09-03
摘要: 干旱是影响茶叶生产的主要气象灾害之一。茶树对干旱胁迫及随后复水的响应非常复杂,探究茶树耐旱机理,对于发掘利用耐旱节水基因资源、提高耐旱性和水分利用效率、发展节水抗旱栽培、减轻旱灾损失具有重要意义。本文简述了干旱对茶树生长发育、产量和品质的影响,述评了当前茶树响应干旱胁迫和复水机理的研究动态,概述了茶树节水抗旱栽培和灾后恢复技术,并展望了今后研究重点。
中图分类号:
刘声传, 陈亮. 茶树耐旱机理及抗旱节水研究进展[J]. 茶叶科学, 2014, 34(2): 111-121. doi: 10.13305/j.cnki.jts.2014.02.001.
LIU Shengchuan, CHEN Liang. Research Advances on the Drought-Resistance Mechanism and Strategy of Tea Plant[J]. Journal of Tea Science, 2014, 34(2): 111-121. doi: 10.13305/j.cnki.jts.2014.02.001.
[1] | Gupta S, Bharalee R, Bhorali P, et al. Identification of drought tolerant progenies in tea by gene expression analysis[J]. Functional & Integrative Genomics, 2012, 12(3): 543-563. |
[2] | Sharma P, Kumar S.Differential display-mediated identification of three drought-responsive expressed sequence tags in tea [Camellia sinensis (L.) O. Kuntze][J]. Journal of Biosciences, 2005, 30(2): 231-235. |
[3] | Farooq M, Hussain M, Wahid A, et al. Drought Stress in Plants: An Overview[M]//Plant Responses to Drought Stress. Springer Berlin Heidelberg, 2012: 1-33. |
[4] | 马蕊. 云南普洱茶大幅减产干旱导致云南茶价上涨[J]. 中国茶叶, 2010, 32(4): 20. |
[5] | 伍崇岳. 干旱致湖南夏茶减产三成[J]. 茶博览, 2011(6): 29. |
[6] | Cheruiyot E K, Mumera L M, Ngetich W K, et al. High fertilizer rates increase susceptibility of tea to water stress[J]. Journal of Plant Nutrition, 2009, 33(1): 115-129. |
[7] | Upadhyaya H, Dutta B K, Sahoo L, et al. Comparative effect of Ca, K, Mn and B on post-drought stress recovery in tea [Camellia sinensis (L.) O Kuntze][J]. American Journal of Plant Sciences, 2012, 3(4): 443-460. |
[8] | 魏鹏. 茶树抗旱性部分生理生化指标的研究[D]. 重庆: 西南农业大学, 2003. |
[9] | 刘玉英, 徐泽, 罗云米. 干旱胁迫对不同茶树品种生理特性的影响[J]. 西南农业学报, 2010, 23(2): 387-389. |
[10] | 杨华, 唐茜, 黄毅, 等. 名山白毫对干旱胁迫的生理生态响应[J]. 西南农业学报, 2010, 23(5): 1497-1503. |
[11] | Cheruiyot E K, Mumera L M, Ngetich W K, et al. Polyphenols as potential indicators for drought tolerance in tea (Camellia sinensis L.)[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(9): 2190-2197. |
[12] | Kato M, Kitao N, Ishida M, et al. Expression for caffeine biosynthesis and related enzymes in Camellia sinensis[J]. Zeitschrift Fur Naturforschung C, 2010, 65(3): 245-256. |
[13] | 柯玉琴, 庄重光, 何华勤, 等. 不同灌溉处理对铁观音茶树光合作用的影响[J]. 应用生态学报, 2008, 19(10): 2132-2136. |
[14] | 曹潘荣, 刘春燕, 刘克斌, 等. 水分胁迫诱导岭头单枞茶香气的形成研究[J]. 华南农业大学学报, 2006, 27(1): 17-20. |
[15] | Chen X H, Zhuang C G, He Y F, et al. Photosynthesis, yield, and chemical composition of Tieguanyin tea plants [Camellia sinensis (L.) O. Kuntze] in response to irrigation treatments[J]. Agricultural Water Management, 2010, 97(3): 419-425. |
[16] | Chaves M M, Maroco J P, Pereira J S.Understanding plant responses to drought—from genes to the whole plant[J]. Functional Plant Biology, 2003, 30(3): 239-264. |
[17] | Xu ZZ, Zhou GS, Shimizu H.Plant responses to drought and rewatering[J]. Plant Signaling & Behavior, 2010, 5(6): 649-654. |
[18] | Kantar M, Lucas S J, Budak H.Drought stress: molecular genetics and genomics approaches[J]. Advances in Botanical Research, 2011(57): 445-493. |
[19] | Upadhyaya H, Panda S K.Responses of Camellia sinensis to drought and rehydration[J]. Biologia Plantarum, 2004, 48(4): 597-600. |
[20] | Upadhyaya H, Panda S K, Dutta B K.Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery[J]. Acta Physiologiae Plantarum, 2008, 30(4): 457-468. |
[21] | 覃秀菊, 李凤英, 何建栋, 等. 广西茶树新品种品系叶片解剖结构特征与特性关系的研究[J]. 中国农学通报, 2009, 25(10): 36-39. |
[22] | Netto L A, Jayaram K M, Puthur J T.Clonal variation of tea [Camellia sinensis (L.) O. Kuntze] in countering water deficiency[J]. Physiology and Molecular Biology of Plants, 2010, 16(4): 359-367. |
[23] | 王家顺, 李志友. 干旱胁迫对茶树根系形态特征的影响[J]. 河南农业科学, 2011, 40(9): 55-57. |
[24] | 杨华. 名山白毫茶树品种对干旱胁迫的生理生态响应[D]. 雅安: 四川农业大学, 2007. |
[25] | 郝树荣, 郭相平, 王为木, 等. 水稻分蘖期水分胁迫及复水对根系生长的影响[J]. 干旱地区农业研究, 2007, 25(1): 149-152. |
[26] | 刘锦春, 钟章成. 水分胁迫和复水对石灰岩地区柏木幼苗根系生长的影响[J]. 生态学报, 2009, 29(12): 6439-6445. |
[27] | Sanders G J, Arndt S K.Osmotic Adjustment Under Drought Conditions[M]//Plant Responses to Drought Stress. Springer Berlin Heidelberg, 2012: 199-229. |
[28] | 张木清, 陈如凯. 作物抗旱分子生理与遗传改良[M]. 北京: 科学出版社, 2005: 369. |
[29] | 潘瑞炽. 植物生理学[M]. 北京: 高等教育出版社, 2004: 297. |
[30] | 刘玉英. 茶树抗旱生理生化机制的研究[D]. 重庆: 西南大学, 2006. |
[31] | Impa S M, Nadaradjan S, Jagadish S V K. Abiotic Stress Responses in Plants[M]//Drought stress induced reactive oxygen species and anti-oxidants in plants, 2012: 131-147. |
[32] | Peleg Z, Blumwald E.Hormone balance and abiotic stress tolerance in crop plants[J]. Current Opinion in Plant Biology, 2011, 14(3): 290-295. |
[33] | 潘根生, 吴伯千, 沈生荣, 等. 水分胁迫过程中茶树新梢内源激素水平的消长及其与耐旱性的关系[J]. 中国农业科学, 1996, 29(5): 9-15. |
[34] | 刘长海, 周莎莎, 邹养军, 等. 干旱胁迫条件下不同抗旱性苹果砧木内源激素含量的变化[J]. 干旱地区农业研究, 2012, 30(5): 94-98. |
[35] | Dobra J, Motyka V, Dobrev P, et al. Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content[J]. Journal of Plant Physiology, 2010, 167(16): 1360-1370. |
[36] | 闫映宇, 赵成义, 盛钰, 等. 膜下滴灌对棉花根系、地上部分生物量及产量的影响[J]. 应用生态学报, 2009, 20(4): 970-976. |
[37] | Reddy A R, Chaitanya K V, Vivekanandan M.Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. Journal of Plant Physiology, 2004, 161(11): 1189-1202. |
[38] | 郭春芳, 孙云, 张木清. 不同土壤水分对茶树光合作用与水分利用效率的影响[J]. 福建林学院学报, 2008, 28(4): 333-337. |
[39] | 郭春芳, 孙云, 唐玉海, 等. 水分胁迫对茶树叶片叶绿素荧光特性的影响[J]. 中国生态农业学报, 2009, 17(3): 560-564. |
[40] | 郭春芳, 孙云, 张木清. 土壤水分胁迫对茶树光合作用——光响应特性的影响[J]. 中国生态农业学报, 2008, 16(6): 1413-1418. |
[41] | 刘玉英, 易红华, 徐泽. 干旱胁迫对不同茶树品种叶绿素含量的影响[J]. 南方农业, 2007, 1(1): 68-70. |
[42] | Huang G T, Ma S L, Bai L P, et al. Signal transduction during cold, salt, and drought stresses in plants[J]. Molecular Biology Reports, 2012, 39(2): 969-987. |
[43] | Chaves M M, Flexas J, Pinheiro C.Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell[J]. Annals of Botany, 2009, 103(4): 446-473. |
[44] | Grigorova B, Vaseva I, Demirevska K, et al. Combined drought and heat stress in wheat: changes in some heat shock proteins[J]. Biologia Plantarum, 2011, 55(1): 105-111. |
[45] | Bahrndorff S, Tunnacliffe A, Wise M J, et al. Bioinformatics and protein expression analyses implicate LEA proteins in the drought response of Collembola[J]. Journal of Insect Physiology, 2009, 55(3): 210-217. |
[46] | Lindemose S, Oshea C, Jensen M K, et al. Structure, function and networks of transcription factors involved in abiotic stress responses[J]. International Journal of Molecular Sciences, 2013, 14(3): 5842-5878. |
[47] | 唐益苗, 赵昌平, 高世庆, 等. 植物抗旱相关基因研究进展[J]. 麦类作物学报, 2009, 29(1): 166-173. |
[48] | 林凡云, 胡银岗, 宋国琦, 等. 糜子干旱后复水过程中基因表达谱的初步分析[J]. 西北农林科技大学学报: 自然科学版, 2007, 35(3): 81-85. |
[49] | 阳文龙. 牛耳草光合作用的脱水保护和复苏机理[D]. 北京: 中国科学院植物研究所, 2002. |
[50] | 刘玉冰. 荒漠复苏植物红砂抗旱机理的生理生态学特性研究[D]. 兰州: 兰州大学, 2006. |
[51] | Kim J M, To T K, Ishida J, et al. Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2012, 53(5): 847-856. |
[52] | Dobra J, Vankova R, Havlova M, et al. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery[J]. Journal of Plant Physiology, 2011, 168(13): 1588-1597. |
[53] | 孙云南, 陈林波, 夏丽飞, 等. 干旱胁迫下茶树基因表达的AFLP分析[J]. 植物生理学报, 2012, 48(3): 241-246. |
[54] | Gupta S, Bharalee R, Bhorali P, et al. Molecular analysis of drought tolerance in tea by cDNA-AFLP based transcript profiling[J]. Molecular Biotechnology, 2013, 53(3): 237-248. |
[55] | Krishnaraj T, Gajjeraman P, Palanisamy S, et al. Identification of differentially expressed genes in dormant (banjhi) bud of tea [Camellia sinensis (L.) O. Kuntze] using subtractive hybridization approach[J]. Plant Physiology and Biochemistry, 2011, 49(6): 565-571. |
[56] | Das A, Das S, Mondal T K.Identification of differentially expressed gene profiles in young roots of tea [Camellia sinensis (L.) O. Kuntze] subjected to drought stress using suppression subtractive hybridization[J]. Plant Molecular Biology Reporter, 2012, 30(5): 1088-1101. |
[57] | 陈盛相, 齐桂年, 夏建冰, 等. 茶树在干旱条件下的 mRNA 差异表达[J]. 茶叶科学, 2012, 32(1): 53-58. |
[58] | Muoki R C, Paul A, Kumar S.A shared response of thaumatin like protein, chitinase, and late embryogenesis abundant protein3 to environmental stresses in tea [Camellia sinensis (L.) O. Kuntze][J]. Functional & Integrative Genomics, 2012, 12(3): 565-571. |
[59] | Li X W, Feng Z G, Yang H M, et al. A novel cold-regulated gene from Camellia sinensis, CsCOR1, enhances salt-and dehydration-tolerance in tobacco[J]. Biochemical and Biophysical Research Communications, 2010, 394(2): 354-359. |
[60] | Paul A, Muoki R C, Singh K, et al. CsNAM-like protein encodes a nuclear localized protein and responds to varied cues in tea [Camellia sinensis (L.) O. Kuntze][J]. Gene, 2012, 502(1): 69-74. |
[61] | Rana N K, Mohanpuria P, Yadav S K.Expression of tea cytosolic glutamine synthetase is tissue specific and induced by cadmium and salt stress[J]. Biologia Plantarum, 2008, 52(2): 361-364. |
[62] | 庄重光. 不同水分处理下铁观音茶树的生理机制及其差异蛋白质组学研究[D]. 福州: 福建农林大学, 2008. |
[63] | Jeyaramraja P R, Kumar R R, Pius P K, et al. Photoassimilatory and photorespiratory behaviour of certain drought tolerant and susceptible tea clones[J]. Photosynthetica, 2003, 41(4): 579-582. |
[64] | Mohanpuria P, Yadav S K.Characterization of novel small RNAs from tea (Camellia sinensis L.)[J]. Molecular Biology Reports, 2012, 39(4): 3977-3986. |
[65] | 杨维时, 江昌俊, 韦胡领, 等. 多抗香茶树品种简介[J]. 中国茶叶, 2009(10): 15. |
[66] | 郭春芳, 孙云, 陈常颂, 等. 茶树品种光合与水分利用特性比较及聚类分析[J]. 作物学报, 2008, 34(10): 1797-1804. |
[67] | 陈周一琪, 王志岚. 肯尼亚茶产业与茶树资源育种研究[J]. 中国农学通报, 2012, 28(19): 97-103. |
[68] | Bhattacharya A, Saini U, Joshi R, et al. Osmotin-expressing transgenic tea plants have improved stress tolerance and are of higher quality[J]. Transgenic Research, 2013, 22(129): 1-13. |
[69] | Miransari M.Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress[J]. Plant Biology, 2010, 12(4): 563-569. |
[70] | 郑芳. 茶树接种VA菌根生理生化特性的研究[D]. 武汉:华中农业大学, 2010. |
[71] | 彭晚霞, 宋同清, 肖润林, 等. 覆盖与间作对亚热带丘陵茶园土壤水分供应的调控效果[J]. 水土保持学报, 2005, 19(6): 97-101. |
[72] | Kigalu J M.Effects of planting density and drought on the productivity of tea clones (Camellia sinensis L.): Yield responses[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(15): 1098-1106. |
[73] | 单武雄, 罗文, 肖润林, 等. 连续5年施菜籽饼肥和稻草覆盖对茶园土壤生态系统的影响[J]. 中国生态农业学报, 2010, 18(3): 472-476. |
[74] | Upadhyaya H, Dutta B K, Panda S K.Zinc modulates drought induced biochemical damages in tea [Camellia sinensis (L) O Kuntze][J]. Journal of Agricultural and Food Chemistry, 2013, 61(27): 6660-6670. |
[75] | 吕文, 杨桂山, 万荣荣, 等. 太湖流域西部丘陵茶园修剪前后蒸散速率的比较分析[J]. 中国生态农业学报, 2013, 21(2): 184-191. |
[76] | 汪汇海, 沙丽清, 杨效东. 稻秸覆盖对有机茶园土壤生态环境影响的研究[J]. 中国生态农业学报, 2006, 14(4): 65-67. |
[77] | 张蕊, 白岗栓. 保水剂在农业生产中的应用及发展前景[J]. 农学学报, 2012, 2(7): 37-42. |
[78] | 赵霞, 黄瑞冬, 李潮海, 等. 农艺措施和保水剂对土壤蒸发和夏玉米水分利用效率的影响[J]. 干旱地区农业研究, 2013, 31(1): 101-106. |
[79] | 李倩, 刘景辉, 张磊, 等. 适当保水剂施用和覆盖促进旱作马铃薯生长发育和产量提高[J]. 农业工程学报, 2013, 29(7): 83-90. |
[80] | 李荣喜, 胡红莲, 黄永芳, 等. 6 种保水剂对油茶生长和光合特性的影响[J]. 经济林研究, 2012, 30(4): 47-51. |
[81] | 王志伟, 梁亚春, 刘文平, 等. 叶面喷施FA旱地龙对冬小麦产量和发育期的影响[J]. 干旱地区农业研究, 2009, 27(1): 68-72. |
[82] | 张国斌, 郁继华, 冯致, 等. NO和ABA对自毒作用下辣椒幼苗光合作用的影响[J]. 中国农业科学, 2013, 46(10): 2076-2084. |
[83] | Cao M, Liu X, Zhang Y, et al. An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants[J]. Cell Research, 2013, 23(8): 1043-1054. |
[84] | Upadhyaya H, Panda S K, Dutta B K.CaCl2 improves post-drought recovery potential in [Camellia sinensis (L) O. Kuntze][J]. Plant Cell Reports, 2011, 30(4): 495-503. |
[1] | 董圆, 张永恒, 肖烨子, 余有本. 茶树BZR1基因家族的鉴定及CsBZR1-5响应干旱胁迫的分子机理研究[J]. 茶叶科学, 2025, 45(1): 15-28. |
[2] | 朱倩, 邵陈禹, 周彪, 刘硕谦, 刘仲华, 田娜. 茶树ICE基因家族鉴定及CsICE43克隆和低温表达分析[J]. 茶叶科学, 2025, 45(1): 43-60. |
[3] | 徐文鸾, 温晓菊, 贾雨轩, 倪德江, 王明乐, 陈玉琼. 茶树果胶甲酯酶及其抑制子家族基因的鉴定及CsPME55参与氟胁迫响应的功能分析[J]. 茶叶科学, 2024, 44(6): 869-886. |
[4] | 杨楠, 李转, 刘玫辰, 马骏杰, 石云桃, 魏湘凝, 林阳顺, 毛宇源, 高水练. 钾营养对茶树EGCG生物合成的调控作用研究[J]. 茶叶科学, 2024, 44(6): 887-900. |
[5] | 赵茜, 刘倩, 蔡何佳奕, 何婕绮, 方筠雅, 刘雨欣, 陈超, 郑曜东, 张天经, 余文娟, 杨广. 干旱低温复合胁迫对茶树光合生理特性的影响及模拟预测[J]. 茶叶科学, 2024, 44(6): 901-916. |
[6] | 刘晓璐, 朱亚兰, 于敏, 盖新月, 范延艮, 孙平, 黄晓琴. 低温胁迫下茶树叶片细胞壁结构变化及光合特性[J]. 茶叶科学, 2024, 44(6): 917-927. |
[7] | 赵建诚, 倪惠菁, 王波, 蔡春菊, 杨振亚. 毛竹立竹密度对林下茶树生理生长和茶叶品质的影响[J]. 茶叶科学, 2024, 44(6): 928-940. |
[8] | 杨肖委, 沈强, 罗金龙, 张拓, 杨婷, 戴宇樵, 刘忠英, 李琴, 王家伦. 基于改进YOLOv8n的茶树嫩芽识别[J]. 茶叶科学, 2024, 44(6): 949-959. |
[9] | 鲁薇, 邬晓龙, 胡贤春, 郝勇, 刘春艳. 茶树接种AM真菌在干旱胁迫下的生理响应[J]. 茶叶科学, 2024, 44(5): 718-734. |
[10] | 刘昱, 杨培迪, 张培凯, 詹文礼, 李游, 姚苏航, 赵洋, 成杨, 刘振, 沈程文. 不同茶树品种叶片细胞壁氟富集差异探究[J]. 茶叶科学, 2024, 44(5): 735-746. |
[11] | 侯智炜, 吕永铭, 马宽, 张汇源, 顾哲, 张然, 李乐, 金俞谷, 苏祝成, 陈红平. 不同茶树品种的径山茶挥发性成分差异研究[J]. 茶叶科学, 2024, 44(5): 747-762. |
[12] | 陈世春, 江宏燕, 廖姝然, 陈亭旭, 牛金志, 王晓庆. 我国茶毛虫及其布尼亚病毒(EpBYV)的遗传多样性分析[J]. 茶叶科学, 2024, 44(5): 793-806. |
[13] | 王娟, 涂一怡, 吕务云, 陈易佳, 李士朴, 王玉春, 陈雅楠. 茶树一种新枝条枯萎病病原菌鉴定及防治药剂筛选[J]. 茶叶科学, 2024, 44(5): 807-815. |
[14] | 孙娟, 陈慧, 刘关华, 张瀚, 黄福印, 王玉玺, 王诺, 保德孟, 施江, 戴伟东, 陈健, 付建玉. 茶树γ-氨基丁酸代谢途径对早期茶尺蠖取食为害的响应[J]. 茶叶科学, 2024, 44(5): 816-830. |
[15] | 张亚真, 钟思彤, 陈志辉, 孔祥瑞, 单睿阳, 郑士琴, 余文权, 陈常颂. 不同黄化茶树种质中咖啡碱合成部位的研究[J]. 茶叶科学, 2024, 44(4): 575-584. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|