[1] 杨贤强, 王岳飞. 茶多酚化学[M]. 上海: 上海科学技术出版社, 2003: 231-233. [2] Lambert J D, Sang S M, Yang C S.Biotransformation of green tea polyphenols and the biological activities of those metabolites[J]. Molecular Pharmaceutics, 2007, 4(6): 819-825. [3] 龚玉雷, 魏春, 王芝德, 等. 生物酶在茶叶提取加工技术中的应用研究[J]. 茶叶科学, 2013, 33(4): 311-321. [4] 王乃栋. 茶多酚氧化酶基因的克隆及其工程菌的构建[D]. 济南: 山东农业大学, 2012: 7-9. [5] Rivera-Hoyos G M, Morales-Alvarez E D, Poutou-Pinales R A, et al. Fungal laccases [J]. Fungal Biology Reviews, 2013, 27(2): 67-82. [6] 宛晓春. 茶叶生物化学[M]. 北京: 中国农业出版社, 2003: 180-195. [7] 刘仲华, 黄建安, 施兆鹏. 黑茶初制中主要酶类的变化[J]. 茶叶科学, 1991, 11(增刊): 17-22. [8] 王志伟, 陈永敢, 王庆璨, 等. 中国植物内生微生物研究的发展和展望[J]. 微生物学通报, 2014, 41(3): 482-496. [9] Choi Y W, Hodgkiss I J, Hyde K D.Enzyme production by endophytes of Brucea javanica[J]. Journal of Agricultural Technology, 2005, 1(1): 55-66. [10] Suryanarayanan T S, Thirunavukkarasu N, Govindarajulu M B.Fungal endophytes: an untapped source of biocatalysts[J]. Fungal Diversity, 2012, 54(1): 19-30. [11] Agusta A, Ohashi K, Shibuya H.Composition of the endophytic filamentous fungi isolated from the tea plant Camellia sinensis[J]. Journal of Natural Medicine, 2006, 60(2): 268-272. [12] 谢丽华, 徐焰平, 王国红, 等. 茶树品种、叶片生育期和茶叶化学成分对内生真菌的影响[J]. 菌物研究, 4(3): 35-41. [13] Agusta A, Ohashi K, Shibuya H.Bisanthraquinone metabolites produced by the endophytic fungus Diaporthe sp.[J]. Chemical and Pharmaceutical Bulletin, 2006, 54(4): 579-582. [14] Zhang L, Zheng Z Z, Zhou Y B, et al. Chinese dark teas: postfermentation, chemistry and biological activities[J]. Food Research International, 2013, 53(1): 600-607. [15] Qin J H, Li N, Tu P F, et al. Change in tea polyphenol and purine alkaoid composition during solid-state fungal fermentation of postfermented tea[J]. Agricultural Food Chemistry, 2012, 60(5): 1213-1217. [16] Hong Y H, Jung E Y, Park Y, et al. Enzymatic improvement in the polyphenol extractability and antioxidant activity of green tea extracts[J]. Biosci Biotechnol Bioem, 2013, 77(1): 22-29. [17] Wulandari R A, Amano M, Yanagita T, et al. New phenolic compounds from Camellia sinensis L. leaves fermented with Asperigillus sp.[J]. Journal of Natural Medicine, 2011, 65(3): 594-597. [18] Gramss G, Gunther T H, Fritsche W.Spot tests for oxidative enzymes in ectomycorrhizal, wood and litter decaying fungi[J]. Mycological Research, 1998, 102(1): 67-72. [19] 苏国成, 王剑锋, 周常义. 液态生产胞外漆酶大型真菌高产菌株筛选[J]. 生态学杂志, 2007, 26(8): 1210-1216. [20] 吴旺宝, 邓泽涛, 邓国志. 一株产耐高温漆酶真菌的筛选[J]. 安徽大学学报, 2007, 32(2): 91-94. [21] Kamal U Z, Abin M, Ayesha S A.Evaluation of tyrosinase producing endophytic fungi from Calotropis gigantea, Azadirachta indica, Ocimum tenuiflorum and Lantana camara[J]. Annual Review & Research in Biology. 2013, 3(4): 389-396. [22] Sharma S, Bhat T, Dawra R.A spectrophotometric method for assay of tannse using rhodanine[J]. Analytical Biochemistry, 2000, 279(1): 85-89. [23] Claudia A, Graciela E F, Rosana F.Total polyphenol content and antioxidant capacity of commercially available tea (Camellia sinensis) in Argentina[J]. Agricultural and food chemistry 2008, 56(19): 9225-9229. [24] Pruidze G N, Mchedlishvili N I, Omiadze N T, et al. Multiple forms of phenol oxidase from Kolkhida tea leaves (Camellia Sinensis L.) and Mycelia Sterilia IBR 35219/2 and their role in tea production[J]. Food Research International, 2003, 36(6): 587-595. [25] 周卫龙, 徐建峰, 陆小磊, 等. GB/T 8305—2013 茶水浸出物测定[S]. 北京: 中国标准出版社, 2014: 3-4. [26] Sang S M, Lambert J D, Ho C T, et al. The chemistry and biotransformation of tea constituents[J]. Pharmacological Research, 2011, 62(2): 87-99. [27] Omiadze N T, Mchedlishvili N I, Rodrigez-Lopez J N, et al. Biochemical processes at the stage of withering during black tea production[J]. Applied Biochemistry and Microbiology, 2014, 50(4): 394-397. [28] Subramanian N, Venkatesh P, Ganguli S, et al. Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins[J]. Journal of Agricultural and Food Chemistry, 1999, 47(7): 2571-2578. [29] 陈东生, 王坤波, 黄建安, 等. 茶树多酚氧化酶研究进展[J]. 茶叶通讯, 2012, 39(2): 17-22. [30] Mohammad F G, Alireza T.Isolation and characterization of polyphenol oxidase- and peroxidase-producing Bacillus strains from fully fermented tea (Camellia sinensis)[J]. World Journal of Microbiology and Biotechnology, 2007, 23(9): 1327-1332. [31] 殷亚峰, 丁玉庭. 茶汁中灵芝菌产多酚氧化酶发酵条件的研究[J]. 浙江工业大学学报, 2005, 33(4): 290-297. [32] Itoh N, Katsube Y, Yamamoto K, et al. Laccase-catalyzed conversion of green tea catechins in the presence of gallic acid to epitheaflagallin and epitheaflagallin 3-O-gallate[J]. Tetrahedron, 2007, 63(38): 9488-9492. [33] Sharma K, Shamsher S B, Harsh P S.Biotransformation of tea catechins into theaflavins with immobilized polyphenol oxidase[J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 56(4): 253-258. [34] Sun X, Gao L D, Hyde K D.Community composition of endophytic fungi in Acer truncatum and their role in decomposition[J]. Fungal Diversity, 2011, 47(1): 85-95. [35] Zaidi K U, Mani A.Evaluation of tyrosinase producing endophytic fungi from Calotropis gigantea, Azadirachta indica, Ocimum tenuiflorum and Lantana camara[J]. Annual Review & Research in Biology, 2013, 3(4): 389-396. [36] Mayer A M.Polyphenol oxidases in plants and fungi: Going places? A review[J]. Phytochemistry, 2006, 67(21): 2318-2331. [37] Marusek C M, Trobaugh N M, Flurkey W H, et al. Comparative analysis of polyphenol oxidase from plant and fungal species[J]. Journal of Inorganic Biochemistry, 2006, 100(1): 108-123. |