Journal of Tea Science ›› 2016, Vol. 36 ›› Issue (1): 92-101.doi: 10.13305/j.cnki.jts.2016.01.012
Previous Articles Next Articles
LIU Yuan, WANG Liyuan*, WEI Kang, CHENG Hao*, ZHANG Fen, WU Liyun, HU Juan
Received:
2015-04-14
Online:
2016-02-15
Published:
2019-08-23
CLC Number:
LIU Yuan, WANG Liyuan, WEI Kang, CHENG Hao, ZHANG Fen, WU Liyun, HU Juan. Screening and Validation of Reference Genes for Quantitative Real-time PCR Analysis in Tea Plant (Camellia sinensis) under Different Nitrogen Nutrition[J]. Journal of Tea Science, 2016, 36(1): 92-101.
[1] | Bustin S A.Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems[J]. Journal of Molecular Endocrinology, 2002, 29(1): 23-39. |
[2] | Bustin S A.Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. Journal of Molecular Endocrinology, 2000, 25(2): 169-193. |
[3] | Radonić A, Thulke S, Mackay I M, et al.Guideline to reference gene selection for quantitative real-time PCR[J]. Biochemical and Biophysical Research Communications, 2004, 313(4): 856-862. |
[4] | Gutierrez L, Mauriat M, Guenin S, et al.The lack of a systematic validation of reference genes: A serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants[J]. Plant Biotechnology Journal, 2008, 6(6): 609-618. |
[5] | Brunner A M, Yakovlev I A, Strauss S H.Validating internal controls for quantitative plant gene expression studies[J]. BMC Plant Biol, 2004, 4:14. |
[6] | Gutierrez L, Mauriat M, Pelloux J, et al.Towards a systematic validation of references in real-time RT-PCR[J]. Plant Cell, 2008, 20(7): 1734-1735. |
[7] | Thellin O, Zorzi W, Lakaye B, et al.Housekeeping genes as internal standards: Use and limits[J]. Journal of Biotechnology, 1999, 75(2/3): 291-295. |
[8] | Warzybok A, Migocka M.Reliable reference genes for normalization of gene expression in cucumber grown under different nitrogen nutrition[J]. PLoS One, 2013, 8(9): e72887. |
[9] | Manoli A, Sturaro A, Trevisan S, et al.Evaluation of candidate reference genes for qPCR in maize[J]. Journal of Plant Physiology, 2012, 169(8): 807-815. |
[10] | Lovdal T, Lillo C.Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress[J]. Analytical biochemistry, 2009, 387(2): 238-242. |
[11] | De Carvalho K, Bespalhok Filho J C, Dos Santos T B, et al. Nitrogen starvation, salt and heat stress in coffee (Coffea arabica L.): Identification and validation of new genes for qPCR normalization[J]. Molecular Biotechnology, 2013, 53(3): 315-325. |
[12] | Xiao X L, Ma J B, Wang J R, et al.Validation of suitable reference genes for gene expression analysis in the halophyte Salicornia europaea by real-time quantitative PCR[J]. Frontiers in Plant Science, 2015, 5: 788. |
[13] | 孙美莲, 王云生, 杨冬青, 等. 茶树实时荧光定量PCR分析中内参基因的选择[J]. 植物学报, 2010, 45: 579-587. |
[14] | Gohain B, Bandyopadhyay T, Borchetia S, et al.Identification and validation of stable reference genes in Camellia Species[J]. Journal of Biotechnology and Pharmaceutical Research, 2011, 2(1): 9-18. |
[15] | Gohain B, Bandyopadhyay T, Bhorali P, et al.Rubisco-bis-phosphate oxygenase (RuBP)-a potential housekeeping gene for qPCR assays in tea[J]. African Journal of Biotechnology, 2012, 11(51): 11193-11199. |
[16] | 郝姗. 茶树不同逆境条件下qRT-PCR适宜内参基因的筛选[D]. 南京: 南京农业大学, 2012: 47-55. |
[17] | Hao X, Horvath D, Chao W, et al.Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)[J]. International Journal of Molecular Sciences, 2014, 15(12): 22155-22172. |
[18] | Okano K, Chutani K, Matsuo K.Suitable level of nitrogen fertilizer for tea (Camellia sinensis L.) plants in relation to growth, photosynthesis, nitrogen uptake and accumulation of free amino acids[J]. Japanese Journal of Crop Science, 1997, 66(2): 279-287. |
[19] | Urbanczyk-Wochniak E, Fernie A R.Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants[J]. Journal of Experimental Botany, 2005, 56(410): 309-321. |
[20] | 魏毅东, 陈玉, 郭海萍, 等. 水稻缺素胁迫下实时荧光定量RT-PCR的内参基因的选择[J]. 农业生物技术学报, 2013, 21: 1302-1312. |
[21] | Ruan J Y, Gerendas J, Hardter R, et al.Effect of nitrogen form and root-zone ph on growth and nitrogen uptake of tea (Camellia sinensis) plants[J]. Annals of Botany, 2007, 99(2): 301-310. |
[22] | Ruan J, Gerendás J, Härdter R, et al.Effect of root zone pH and form and concentration of nitrogen on accumulation of quality-related components in green tea[J]. Journal of the Science of Food and Agriculture, 2007, 87(8): 1505-1516. |
[23] | 蒋晓梅, 张新全, 严海东, 等. 柳枝稷根组织实时定量PCR分析中内参基因的选择[J]. 农业生物技术学报, 2014, 22: 55-63. |
[24] | Silver N, Best S, Jiang J, et al.Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR[J]. BMC Molecular Biology, 2006, 7(1): 33. |
[25] | Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes [J]. Genome Biology, 2002, 3(7): research0034.1-0034.11. |
[26] | Andersen C L, Jensen J L, Orntoft T F.Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 2004, 64(15): 5245-5250. |
[27] | 汪进, 添先凤, 江昌俊, 等. 茶树硝酸盐转运蛋白基因的克隆和表达分析[J]. 植物生理学报, 2014, 50: 983-988. |
[28] | Wang YY, Hsu PK, Tsay YF.Uptake, allocation and signaling of nitrate[J]. Trends in Plant Science, 2012, 17: 458-467. |
[29] | Wu X, Yang H, Qu C, et al. Sequence and expression analysis of the AMT gene family in poplar[J]. Frontiers in Plant Science, 2015, 6: 337. |
[30] | Faccioli P, Ciceri G P, Provero P, et al.A combined strategy of ′in silico′ transcriptome analysis and web search engine optimization allows an agile identification of reference genes suitable for normalization in gene expression studies[J]. Plant Mol Biol, 2007, 63(5): 679-688. |
[31] | Olvera J, Wool I G.The primary structure of rat ribosomal protein L13[J]. Biochemical and Biophysical Research Communications, 1994, 201(1): 102-107. |
[32] | Martinez-Guitarte J L, Planello R, Morcillo G. Characterization and expression during development and under environmental stress of the genes encoding ribosomal proteins L11 and L13 in Chironomus riparius[J]. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 2007, 147(4): 590-596. |
[33] | Jain M, Tyagi S B, Thakur J K, et al.Molecular characterization of a light-responsive gene, breast basic conserved protein 1 (OsiBBC1), encoding nuclear-localized protein homologous to ribosomal protein L13 from Oryza sativa indica[J]. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 2004, 1676(2): 182-192. |
[34] | Ye X, Zhang F M, Tao Y H, et al.Reference gene selection for quantitative real-time PCR normalization in different cherry genotypes, developmental stages and organs[J]. Scientia Horticulturae, 2015, 181: 182-188. |
[35] | Wang X C, Zhao Q Y, Ma C L, et al.Global transcriptome profiles of Camellia sinensis during cold acclimation[J]. BMC Genomics, 2013, 14(1): 415. |
[36] | Wei K, Wang L Y, Wu L Y, et al.Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.)[J]. PLoS One, 2014, 9(9): e107201. |
[37] | Lim F-H, Fakhrana I N, Rasid O A, et al.Isolation and selection of reference genes for Ganoderma boninense gene expression study using quantitative Real-time PCR (qPCR)[J]. Journal of Oil Palm Research, 2014, 26(2): 170-181. |
[38] | An Y Q, Mcdowell J M, Huang S R, et al.Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues[J]. Plant Journal, 1996, 10(1): 107-121. |
[39] | 周晓惠, 刘军, 庄勇. 喀西茄内参基因实时荧光定量PCR表达稳定性评价[J]. 园艺学报, 2014, 41: 1731-1738. |
[40] | Czechowski T, Stitt M, Altmann T, et al.Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis[J]. Plant Physiol, 2005, 139(1): 5-17. |
[41] | Jain M.Genome-wide identification of novel internal control genes for normalization of gene expression during various stages of development in rice[J]. Plant Science, 2009, 176(5): 702-706. |
[42] | 周兰, 张利义, 张彩霞, 等. 苹果实时荧光定量PCR分析中内参基因的筛选[J]. 果树学报, 2012, 29(6): 965-970. |
[1] | SU Jingjing, RUAN Li, WANG Liyuan, WEI Kang, WU Liyun, BAI Peixian, CHENG Hao. Early Identification of Nitrogen Absorption Efficiency in Tea Plants [J]. Journal of Tea Science, 2020, 40(5): 576-587. |
[2] | XIN Huahong, WANG Weidong, WANG Mingle, MA Qingping, GAN Yudi, LI Xinghui. Molecular Cloning, Subcellular Localization and Expression Analysis of CsPT4 Gene in Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2017, 37(5): 493-502. |
[3] | FANG Jie, LI Chunfang, MA Chunlei, CHEN Liang. Molecular Cloning, Bioinformatics and Expression Analysis of GGPS Gene Family in Tea Plant [J]. Journal of Tea Science, 2017, 37(2): 130-138. |
[4] | HUANG Yuting, QIAN Wenjun, WANG Bo, CAO Hongli, WANG Lu, HAO Xinyuan, WANG Xinchao, YANG Yajun. Effects of Exogenous Calcium and Inhibitors of Calcium Signaling Transduction Pathway on Cold Resistance of Tea Plant [J]. Journal of Tea Science, 2015, 35(6): 520-526. |
[5] | XIE Xiaofang, TIAN Xianfeng, JIANG Changjun, LI Yeyun. Screening of microRNA Reference Genes for Real-time Fluorescence Quantitative PCR under Cold Stress in Camellia sinensis [J]. Journal of Tea Science, 2015, 35(6): 596-604. |
[6] | HU Juan, WANG Liyuan, WEI Kang, CHENG Hao, ZHANG Chengcai, ZHANG Fen, WU Liyun. Cloning and Expression Analysis of CsCDF1 (Cycling Dof Factor 1) Gene in Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2015, 35(5): 501-511. |
[7] | CAO Hong-li, HAO Xin-yuan, YUE Chuan, MA Chun-lei, WANG Xin-chao, YANG Ya-jun. Cloning and Expression Analysis of Betaine Aldehyde Dehydragenase Gene (CsBADH1) from Tea Plant [Camellia sinensis (L.) O. Kuntze] [J]. Journal of Tea Science, 2013, 33(2): 99-108. |
[8] | CHEN Lin-bo, FANG Chao, WANG Yu, LI Ye-yun, JIANG Chang-jun, LIANG Ming-zhi. Cloning and Expression Analysis of Stress-resistant ERF Genes from Tea Plant [Camellia sinensis (L.) O. Kuntze] [J]. Journal of Tea Science, 2011, 31(1): 53-58. |
[9] | CHEN Xuan, FANG Wan-ping, ZOU Zhong-wei, WANG Yu-hua, CHENG Hao, LI Xing-hui. Cloning and Expression Analysis of CBF Gene in Cold Induced Tea Plant [Camellia Sinensis (L.)O.Kuntze] [J]. Journal of Tea Science, 2009, 29(1): 53-59. |
[10] | MA Chun-lei, ZHAO Li-ping, ZHANG Ya-li, CHEN Liang. Molecular Cloning and Sequence Analysis of Chalcone Isomerase Gene of Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2007, 27(2): 127-132. |
[11] | WU Shan, LIANG Yue-rong, LU Jian-liang, LI Hao-yan. Combination of Particle Bombardment-mediated and Agrobacterium-mediated Transformation Methods in Tea Plant [J]. Journal of Tea Science, 2005, 25(4): 255-264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|