Journal of Tea Science ›› 2022, Vol. 42 ›› Issue (5): 610-622.doi: 10.13305/j.cnki.jts.2022.05.006
• Research Paper • Previous Articles Next Articles
WU Jing1, CHEN Nannan1, HAN Menglin1, CHEN Gao1, LI Weiwei1, ZHANG Shuxiang2, JIANG Xiaolan1,*
Received:
2021-12-12
Revised:
2022-01-07
Online:
2022-10-15
Published:
2022-10-28
CLC Number:
WU Jing, CHEN Nannan, HAN Menglin, CHEN Gao, LI Weiwei, ZHANG Shuxiang, JIANG Xiaolan. Isolation, Identification and Characterization of Aluminum-tolerant Growth-promoting Endophytic Bacteria in Tea Roots[J]. Journal of Tea Science, 2022, 42(5): 610-622.
[1] 骆耀平. 茶树栽培学[M]. 北京: 中国农业出版社, 2015. Luo Y P.Tea cultivation [M]. Beijing: China Agriculture Press, 2015. [2] 沈宏, 严小龙. 铝对植物的毒害和植物抗铝毒机理及其影响因素[J]. 土壤通报, 2001(6): 281-285. Shen H, Yan X L.Types of aluminum toxicity and plants resistance to aluminum toxicity[J]. Chinese Journal of Soil Science, 2001(6): 281-285. [3] 孙婷, 刘鹏, 郑人卫, 等. 茶树体内铝形态及铝累积特性[J]. 作物学报, 2009, 35(10): 1909-1915. Sun T, Liu P, Zheng R W, et al.Forms and accumulation of aluminum in tea plant ( [4] 王金林, 闻禄, 陈平, 等. 长期不同施肥对茶园土壤pH、茶叶产量可持续性和品质的影响[J]. 中国农学通报,2021, 37(8): 84-88. Wang J L, Wen L, Chen P, et al.Effects of long-term fertilization on soil pH, yield sustainability and quality of tea[J]. Chinese Agricultural Science Bulletin, 2021, 37(8): 84-88. [5] 傅绍光, 刘鹏, 罗虹, 等. 铝和氟对茶树根际土壤微生物交互作用的研究[J]. 浙江师范大学学报(自然科学版), 2009, 32(3): 332-337. Fu S G, Liu P, Luo H, et al.Interaction of aluminum and fluorine stress on soil microbes of tea rhizosphere[J]. Journal of Zhejiang Normal University (Natural Sciences), 2009, 32(3): 332-337. [6] Watanabe T, Osaki M.Mechanisms of adaptation to high aluminum condition in native plant species growing in acid soils: a review[J]. Communications in Soil Science and Plant Analysis, 2002, 33(7/8): 1247-1260. [7] Kochian L V, Piñeros M A, Liu J, et al.Plant adaptation to acid soils: the molecular basis for crop aluminum resistance[J]. Annual Review of Plant Biology, 2015, 66: 571-598. [8] 黄凯, 张红宇, 张菡倩, 等. 植物应答铝毒的分子机制研究进展[J]. 生物技术通报, 2021, 37(3): 125-135. Huang K, Zhang H Y, Zhang H Q, et al.Research progress on the molecular mechanism of plants response to aluminum toxicity[J]. Biotechnology Bulletin, 2021, 37(3): 125-135. [9] Tahara K, Hashida K, Otsuka Y, et al.Identification of a hydrolyzable tannin, oenothein B, as an aluminum-detoxifying ligand in a highly aluminum-resistant tree, [10] Kidd P S, Llugany M, Poschenrieder C, et al.The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize ( [11] 赵希俊, 宋萍, 封磊, 等. 一株具有耐铝促生作用的茶树内生细菌的分离鉴定[J]. 江西农业大学学报, 2014, 36(2): 407-412. Zhao X J, Song P, Feng L, et al.Isolation and identification of a growth-promoting and aluminum-resistant endophytic bacterium from tea tree[J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(2): 407-412. [12] Sun L L, Zhang M S, Liu X M, et al.Aluminium is essential for root growth and development of tea plants( [13] 兰欣悦. 土壤酸化对于茶树利用铝的影响[J]. 广东蚕业, 2019, 53(5): 30-31, 33. Lan X Y.The effect of soil acidification on the utilization of aluminum in tea trees[J]. Guangdong Sericulture, 2019, 53(5): 30-31, 33. [14] 黄丹娟, 毛迎新, 陈勋, 等. 茶树富集铝的特点及耐铝机制研究进展[J]. 茶叶科学, 2018, 38(2): 125-132. Huang D J, Mao Y X, Chen X, et al.Advances in aluminum accumulation and tolerance mechanisms in tea plant ( [15] Ding Z J, Shi Y Z, Li G X, et al.Tease out the future: how tea research might enable crop breeding for acid soil tolerance[J]. Plant Communications, 2021, 2(3): 100182. doi: 10.1016/j.xplc.2021.100182. [16] 王敏, 宁秋燕, 石元值. 茶树幼苗对不同浓度铝的生理响应差异研究[J]. 茶叶科学, 2017, 37(4): 356-362. Wang M, Ning Q Y, Shi Y Z.Study on physiological response of tea plant ( [17] 潘根生, 小西茂毅. 供铝条件下氮对茶苗生长发育的影响[J]. 浙江农业大学学报, 1995, 21(5): 461-464. Pan G S, Shigeki K.Effect of nitrogen on growth of tea under the supply of aluminium[J]. Journal of Zhejiang Agricultural University, 1995, 21(5): 461-464. [18] Morita A, Yanagisawa O, Takatsu S, et al.Mechanism for the detoxification of aluminum in roots of tea plant ( [19] Li D Q, Shu Z F, Ye X L, et al.Cell wall pectin methyl-esterification and organic acids of root tips involve in aluminum tolerance in [20] Safari M, Ghanati F, Safarnejad M R, et al.The contribution of cell wall composition in the expansion of [21] Fu Z H, Jiang X L, Li W W, et al.Proanthocyanidin-aluminum complexes improve aluminum resistance and detoxification of [22] 何玲敏, 叶建仁. 植物内生细菌及其生防作用研究进展[J]. 南京林业大学学报(自然科学版), 2014, 38(6): 153-159. He L M, Ye J R.Endophytic bacteria: research advances and biocontrol applications[J]. Journal of Nanjing Forestry University (Natural Sciences), 2014, 38(6): 153-159. [23] 严婉荣, 赵廷昌, 肖彤斌, 等. 生防细菌在植物病害防治中的应用[J]. 基因组学与应用生物学, 2013, 32(4): 533-539. Yan W R, Zhao T C, Xiao T B, et al.Applications of biocontrol bacteria in plant disease control[J]. Genomics and Applied Biology, 2013, 32(4): 533-539. [24] Shan W N, Zhou Y, Liu H H, et al.Endophytic actinomycetes from tea plants ( [25] 王红珠, 吴华芬, 吕高卿, 等. 耐铅植物内生菌的筛选及其促生机制研究[J]. 浙江农业科学, 2021, 62(4): 823-827. Wang H Z, Wu H F, Lü G Q, et al.Screening and promoting mechanism study of Pb-resistant endophytes[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(4): 823-827. [26] 张沁怡, 杨美雪, 张婷, 等. 油菜根内生菌分离、鉴定及其植物益生作用筛选[J]. 福建农业科技, 2021, 52(11): 33-43. Zhang Q Y, Yang M X, Zhang T, et al.Isolation and identification of endophytic bacteria from the roots of brassica napus and the screening for the probiotic effects of plants[J]. Fujian Agricultural Science and Technology, 2021, 52(11): 33-43. [27] 狄义宁, 谢林艳, 谷书杰, 等. 甘蔗及甘蔗近缘属内生菌的筛选、鉴定与功能研究[J]. 中国农业大学学报, 2021, 26(11): 70-83. Di Y N, Xie L Y, Gu S J, et al.Screening, identification and biological function study of endophytic bacteria isolated[J]. Journal of China Agricultural University, 2021, 26(11): 70-83. [28] Lucero C T, Lorda G S, Anzuay M S, et al.Peanut endophytic phosphate solubilizing bacteria increase growth and P content of soybean and maize plants[J]. Current Microbiology, 2021, 78(5): 1961-1972. [29] 罗继鹏, 陶琦, 吴可人, 等. 超积累植物内生微生物群落组成特征及其功能研究进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 515-529. Luo J P, Tao Q, Wu K R, et al.Research progress in composition and function of hyperaccumulator-associated endogenous microorganism community[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2018, 44(5): 515-529. [30] 刘雪停, 林晓民, 夏彦飞. 牡丹内生细菌生物防治技术研究进展[J]. 河南农业, 2021(12): 55-56. Liu X T, Lin X M, Xia Y F.Research progress on biological control technology of endophytic bacteria in Peonia Suffruticosa[J]. Agriculture of Henan, 2021(12): 55-56. [31] 常恺莉, 张琳, 周红英, 等. 药用植物内生菌资源在农业中的应用与研究进展[J]. 山东农业科学, 2021, 53(7): 135-141. Chang K L, Zhang L, Zhou H Y, et al.Application and research progress of endophyte resources of medicinal plants in agriculture[J]. Shandong Agricultural Sciences, 2021, 53(7): 135-141. [32] 于晓燕, 宋宇辰, 魏光普, 等. 镧、铈污染土壤中植物-菌根协同修复效应[J]. 稀土, 2021, 42(4): 91-100. Yu X Y, Song Y C, Wei G P, et al.Phytomycorrhizal synergistic remediation of soil polluted by lanthanum and cerium[J]. Chinese Rare Earths, 2021, 42(4): 91-100. [33] 张凯璇, 唐艳葵, 秦芷怡, 等. 植物内生菌应用于有害金属污染环境修复研究进展[J]. 江苏农业科学, 2018, 46(6): 17-22. Zhang K X, Tang Y K, Qin Z Y, et al.Research progress on application of plant endophytes in remediation of environmental pollution caused by harmful metals[J]. Jiangsu Agricultural Sciences, 2018, 46(6): 17-22. [34] 刘丽辉, 蒋慧敏, 区宇程, 等. 南方野生稻内生细菌的分离鉴定及促生作用[J]. 应用与环境生物学报, 2020, 26(5): 1051-1058. Liu L H, Jiang H M, Qu Y C, et al.Identification and growth promotion of endophytic bacteria isolated from [35] 汪立群, 颜小梅, 郭小双, 等. 紫娟、云抗10号两个茶树品种内生菌多样性研究[J]. 安徽农业大学学报, 2016, 43(1): 1-5. Wang L Q, Yan X M, Guo X S, et al.Diversity of endophytic microorganisms Zijuan and Yunkang 10 of [36] 冀玉良, 李丹, 罗嘉凡. ACC脱氨酶活性菌的分离及其对桔梗的促生作用[J]. 商洛学院学报, 2021, 35(2): 33-40. Ji Y L, Li D, Luo J F.Isolation of ACC deaminase active bacteria and its growth-promoting effect on platycodon grandiflorum[J]. Journal of Shangluo University, 2021, 35(2): 33-40. [37] 李玲, 沈琼雯, 庞祥宇, 等. 贵州喀斯特地区具ACC脱氨酶活性细菌的分离和鉴定[J]. 基因组学与应用生物学, 2018, 37(4): 1495-1505. Li L, Shen Q W, Pang X Y, et al.Isolation and identification of bacteria with 1-aminocyclopropane-1-carboxylic acid deaminase activity in karst soil from Guizhou[J]. Genomics and Applied Biology, 2018, 37(4): 1495-1505. [38] 张莹, 张文莉, 陈小贝, 等. 细菌产铁载体的结构、功能及其研究进展[J]. 中国卫生检验杂志, 2012, 22(9): 2249-2251. Zhang Y, Zhang W L, Chen X B, et al.Structure, function and research progress of bacterial iron-producing carrier[J]. Chinese Journal of Health Laboratory Technology, 2012, 22(9): 2249-2251. [39] 董蒙蒙, 袁博, 徐玲霞, 等. 南方红豆杉产IAA内生芽胞杆菌的分离、鉴定及产脂肽类化合物研究[J]. 亚热带植物科学, 2020, 49(6): 420-426. Dong M M, Yuan B, Xu L X, et al.Isolation and identification of endophytic [40] 孙艳敏, 韩锦峰, 陈小丽, 等. 减施化学农药防治植物病害措施的研究进展[J]. 贵州农业科学, 2021, 49(5): 58-66. Sun Y M, Han J F,Chen X L, et al.Advances in measures of reduction of chemical pesticides to control plant diseases[J]. Guizhou Agricultural Sciences, 2021, 49(5): 58-66. [41] 游雨晴. 生物防治在农业病虫害防治中的应用[J]. 新农业, 2021(7): 13-14. You Y Q.Application of biological control in agricultural pest control[J]. Modern Agriculture, 2021(7): 13-14. |
[1] | JIAO Haizhen, SHAO Chenyu, CHEN Jianjiao, ZHANG Chenyu, CHEN Jiahao, LI Yunfei, SHEN Chengwen. Dynamic Changes of Physiological Responses and Antioxidant Enzyme Activities in Tea Root System under Severe Shading and Removal of Shading [J]. Journal of Tea Science, 2021, 41(5): 695-704. |
[2] | HUANG Danjuan, TAN Rongrong, CHEN Xun, WANG Hongjuan, GONG Ziming, WANG Youping, MAO Yingxin. Transcriptome Analysis of Root Induced by Aluminum in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2019, 39(5): 506-520. |
[3] | XU Jiajia, GUANG Min, SHI Shulin, GAO Hongjian. Physiological and Molecular Mechanisms of Transmembrane Fluoride Uptake by Tea Roots [J]. Journal of Tea Science, 2019, 39(4): 365-371. |
[4] | REN Hengze, ZHANG Lixia, XIANG Qinzeng, HAN Xiaoyang, YU Qian, CAI Lu. Effects of Rooting Agent on Endogenous Hormone Levels and Propagation of Softwood Cuttings of Tea Plant [J]. Journal of Tea Science, 2019, 39(1): 11-12. |
[5] | REN Hengze, XIANG Qinzeng, ZHAO Xiuxiu, CAI Lu, ZHANG Lixia. Effects of Apical -shoots and Functional Leaves on the Fast Propagation of Tea Cuttings under the Condition of Full-illumination and Mist [J]. Journal of Tea Science, 2018, 38(5): 469-479. |
[6] | LUO Yi, SU Youjian, ZHANG Yongli, XIA Xianjiang, SONG Li, WANG Yejun, LIAO Wangyou. Research on The Promoting Effects on Tea Growth and Aluminum Tolerant Mechanism of Bacillus subtilis Strain QM7 [J]. Journal of Tea Science, 2016, 36(6): 567-574. |
[7] | HU Xiexin, YI Youjin, BO Lianyang, LI Gaoyang, ZHOU Hongli, ZHOU Jinwei, XIA Bo. Research on Separation, Identification and Transformation Products Transformed Kudzu Root of ′Jinhua′ Fungus [J]. Journal of Tea Science, 2016, 36(3): 268-276. |
[8] | WANG Liyuan, CHEN Changsong, LIN Zhenghe, WEI Kang, WU Liyun, FENG Suhua, CHENG Hao. Growth Characteristic of Different Cultivars of Tea Plant in Response to Nitrogen Contents [J]. Journal of Tea Science, 2015, 35(5): 423-428. |
[9] | PANG Xin, WANG Yuhua, WANG Weidong, YIN Ying, SHU Zaifa, CHEN Xuan, LI Xinghui. Effects of Tea Pruning Materials and Tea Polyphenols on Organic Acids Secretion and Mineral Uptake in Tea Plant [J]. Journal of Tea Science, 2014, 34(6): 591-600. |
[10] | LI Feng, ZHANG Li-xia, WANG Nai-dong, LIU Yang. The Development Process of Adventitious Root of the Tea Shoots by Air Layering [J]. Journal of Tea Science, 2011, 31(5): 379-385. |
[11] | LIU Teng-teng, GAO Hong-jian, WAN Xiao-chun, ZHANG Zheng-zhu. Impacts of Aluminum on Root Cell Membrane Permeability and Organic Acids in Root Exudates of Tea Plant [J]. Journal of Tea Science, 2011, 31(5): 458-462. |
[12] | MAO Qing-li, SHI Zhao-peng, LI Lin, LIU Zhong-hua, ZHU Qi. Study on Inhibitation of Agrobacterium rhizogenes by Tea Catechin and Screening of Anti-polyphenol Strain [J]. Journal of Tea Science, 2007, 27(3): 243-247. |
[13] | ZHANG Guang-hui, LIANG Yue-rong, LU Jian-liang, DONG Jun-jie. Analysis of Theanine and Catechins in Hairy Roots of Camellia sinensis [J]. Journal of Tea Science, 2006, 26(4): 305-309. |
[14] | ZHANG Guang-hui, LIANG Yue-rong, LU Jian-liang. Agrobacterium Rhizogenes-Mediated High Frequency Hairy Root Induction and Genetic Transformation in Tea Plant [J]. Journal of Tea Science, 2006, 26(1): 1-10. |
[15] | ZHOU Jian, CHENG Hao, WANG Li-yuan. Effect of Phytohormone Induction on Direct Rooting of Tea Plant (Camellia sinensis) Microshoots in Greenhouse [J]. Journal of Tea Science, 2005, 25(4): 265-269. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|