Journal of Tea Science ›› 2018, Vol. 38 ›› Issue (1): 1-8.doi: 10.13305/j.cnki.jts.2018.01.001
LI Yong1, TANG Che2, ZHAO Hua1,*, NI Dejiang1
Received:
2017-06-29
Revised:
2017-10-24
Online:
2018-02-15
Published:
2019-08-28
CLC Number:
LI Yong, TANG Che, ZHAO Hua, NI Dejiang. Advances of Aluminum Tolerance and Accumulation in Tea Plant[J]. Journal of Tea Science, 2018, 38(1): 1-8.
[1] | Haug A, Foy C E.Molecular aspects of aluminum toxicity[J]. Critical Reviews in Plant Sciences, 1983, 1(4): 345-373. |
[2] | Ma J F.Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants[J]. International Review of Cytology-A Survey of Cell Biology, 2007, 264: 225-253. |
[3] | Ma JF, Shen R, Zhao Z, et al.Response of rice to Al stress and identification of quantitative trait loci for Al tolerance[J]. Plant & Cell Physiology, 2002, 43: 652-659. |
[4] | Matsumoto H, Hirasawa E, Morimura S, et al.Localization of aluminium in tea leaves[J]. Plant & Cell Physiology, 1976, 17(3): 627-631. |
[5] | Ghanati F, Morita A, Yokota H.Effects of aluminum on the growth of tea plant and activation of antioxidant system[J]. Plant and Soil, 2005, 276(1): 133-141. |
[6] | Hajiboland R, Rad S B, Barcelo J, et al.Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis)[J]. Journal Plant Nutrition and Soil Science, 2013, 176: 616-625. |
[7] | Li Y, Huang J, Song X W, et al.An RNA-Seq transcriptome analysis revealing novel insights into aluminum tolerance and accumulation in tea plant[J]. Planta, 2017, 246: 91-103. |
[8] | Xu Q S, Wang Y, Ding Z T, et al.Aluminum induced physiological and proteomic responses in tea (Camellia sinensis) roots and leaves[J]. Plant Physiology and Biochemistry, 2017, 115: 141-151. |
[9] | 梁月荣. 茶树铝代谢研究及其对作物抗铝育种的意义[J]. 福建茶叶, 1993(3): 20-24. |
[10] | Carr H P, Lombi E, Kupper H, et al.Accumulation and distribution of aluminium and other elements in tea (Camellia sinensis) leaves[J]. Agronomie, 2004, 23(8): 705-710. |
[11] | Gao H J, Zhao Q, Zhang X C.Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots[J]. Journal of Agricultural and Food Chemistry, 2014, 62: 2313-2319. |
[12] | Fung K F, Carr H P, Poon B H, et al.A comparison of aluminum levels in tea products from Hong Kong markets and in varieties of tea plants from Hong Kong and India[J]. Chemosphere, 2009, 75(7): 955-962. |
[13] | 于翠平. 茶树耐铝的基因型差异及机理研究[D]. 杭州: 浙江大学, 2014: 34. |
[14] | 王琼琼, 薛志慧, 陈志丹, 等. 不同茶树种质间氟铝元素积累特性的研究[J]. 热带作物学报, 2016, 37(5): 862-869. |
[15] | Nagata T, Hayatsu M, Kosuge N.Identification of aluminium forms in tea leaves by 27Al NMR[J]. Phytochemistry, 1992, 31: 1215-1218. |
[16] | Morita A, Horie H, Fujii Y, et al.Chemical forms of aluminum in xylem sap of tea plants (Camellia sinensis L.)[J]. Phytochemistry, 2004, 65: 2775-2780. |
[17] | Morita A, Yanagisawa O, Takatsu S, et al.Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinensis (L.) Kuntze)[J]. Phytochemistry, 2008, 69(1): 147-153. |
[18] | 孙婷, 刘鹏, 郑人卫, 等. 茶树体内铝形态及铝累积特性[J]. 作物学报, 2009, 35(10): 1909-1915. |
[19] | 潘根生, Masaki T, 小西茂毅. 茶根尖细胞各胞器分部的分离及其绍的分布[J]. 浙江农业大学学报, 1991, 17(3): 255-258. |
[20] | Tolrà R, Vogel-Mikuš K, Hajiboland R, et al.Localization of aluminium in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy[J]. Journal of Plant Research, 2011, 124(1): 165-172. |
[21] | 马士成. 铝对茶树氟吸收、累积、分布特性的影响及其机理研究[D]. 杭州: 浙江大学, 2012: 80. |
[22] | Chenery E M.A preliminary study of aluminium and the tea bush[J]. Plant and Soil, 1955, 6(2): 174-200. |
[23] | 方兴汉, 吴彩. 铝对茶树无机营养吸收和分布的影响[J]. 中国茶叶, 1989, 11(4): 34-35. |
[24] | 潘根生, 小西茂毅. 供铝条件下氮对茶苗生长发育的影响[J]. 浙江大学学报(农业与生命科学版), 1995(5): 461-464. |
[25] | Xu Q S, Wang Y, Ding Z T, et al.Aluminum induced metabolic responses in two tea cultivars[J]. Plant Physiology and Biochemistry, 2016, 101: 162-172. |
[26] | Ruan J, Ma L, Shi Y, et al.Effects of litter incorporation and nitrogen fertilization on the contents of extractable aluminium in the rhizosphere soil of tea plant (Camallia sinensis (L.) O. Kuntze)[J]. Plant and Soil, 2004, 263(1): 283-296. |
[27] | Chen Y M, Tsao T M, Liu C C, et al.Aluminium and nutrients induce changes in the profiles of phenolic substances in tea plants (Camellia sinensis CV TTES, No. 12 (TTE))[J]. Journal of the Science of Food and Agriculture, 2011, 91(6): 1111-1117. |
[28] | Yang Y, Yu Liu Y, Huang C F, et al.Aluminium alleviates fluoride toxicity in tea (Camellia sinensis)[J]. Plant and Soil, 2016, 402: 179-190. |
[29] | 李春雷, 倪德江. 铝对茶树光合特性和叶片超微结构的影响[J]. 湖北农业科学, 2014, 53(3): 604-606. |
[30] | Brunner I, Sperisen C.Aluminium exclusion and aluminium tolerance in woody plants[J]. Frontier of Plant Science, 2013, 4(1): 172. doi:10.3389/pis.2013.0072. |
[31] | Morita A, Yanagisawa O, Maeda S, et al.Tea plant (Camellia sinensis L.) roots secrete oxalic acid and caffeine into medium containing aluminum[J]. Soil Science and Plant Nutrition, 2011, 57: 796-802. |
[32] | Yancey P H.Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses[J]. Journal of Experimental and Biology, 2005, 208(15): 2819-2830. |
[33] | Hamilton C A, Good A G, Taylor G J.Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat[J]. Plant Physiology, 2001, 125(4): 2068-2077. |
[34] | Wang ZQ, Xu XY, Gong QQ, et al.Root proteome of rice studied by iTRAQ provides integrated insight into aluminum stress tolerance mechanisms in plants[J]. Journal of Proteomics, 2014, 98: 189-205. |
[35] | Cramer W A, Zhang H, Yan J, et al.Transmembrane traffic in the cytochrome b6f complex[J]. Annual Review of Biochemistry, 2006, 75(1): 769-790. |
[36] | Rowland J G, Simon W J, Nishiyama Y, et al.Differential proteomic analysis using iTRAQ reveals changes in thylakoids associated with Photosystem II-acquired thermotolerance in Synechocystis sp. PCC 6803[J]. Proteomics, 2010, 10(10): 1917-1929. |
[37] | Dai H, Cao F, Chen X, et al.Comparative proteomic analysis of aluminum tolerance in tibetan wild and cultivated barleys[J]. PLoS One, 2013, 8(5): e63428. |
[38] | Kumari M, Taylor G J, Deyholos M K.Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana[J]. Moleular Genetics and Genomics, 2008, 279: 339-357. |
[39] | 罗亮, 谢忠雷, 刘鹏, 等. 茶树对铝毒生理响应的研究[J]. 农业环境科学学报, 2006, 25(2): 305-308. |
[40] | 于翠平, 潘志强, 陈杰, 等. 铝对茶树生长与生理特性影响的研究[J]. 植物营养与肥料学报, 2012, 18(1): 182-187. |
[41] | Huang C F, Yamaji N, Chen Z C, et al.A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice[J]. Plant Journal, 2012, 69: 857-867. |
[42] | Liu J, Magalhaes J V, Shaff J, et al.Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance[J]. Plant Journal, 2009, 57(3): 389-399. |
[43] | Larsen P B, Geisler M J, Jones C A, et al.ALS3 encodes a phloemlocalized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis[J]. Plant Journal, 2005, 41: 353-363. |
[44] | Yokosho K, Yamaji N, Ma J F.Global transcriptome analysis of Al-induced genes in an Alaccumulating species, common buckwheat (Fagopyrum esculentum Moench)[J]. Plant Cell and Physiology, 2014, 55(12): 2077-2091. |
[45] | Dean M, Rzhetsky A, Allikmets R.The human ATPbinding cassette (ABC) transporter superfamily[J]. Genome Research, 2001, 11: 1156-1166. |
[46] | Bose J, Babourina O, Rengel Z.Role of magnesium in alleviation of aluminium toxicity in plants[J]. Journal Experimental and Botany, 2011, 62(7): 2251-2264. |
[47] | Yokosho K, Yamaji N, Ma J F.An Al-inducible MATE gene is involved in external detoxification of Al in rice[J]. Plant Journal, 2011, 68(6): 1061-1069. |
[48] | Negishi T, Oshima K, Hattori M, et al.Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue Hydrangea Sepals of aluminum hyperaccumulating plant[J]. PLoS One, 2012, 7: e43189. doi:10.3171/journal.pone.0043189. |
[49] | Loqué D, Ludewig U, Yuan L, et al.Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole[J]. Plant Physiology, 2005, 137: 671-680. |
[50] | Liu L H, Wirén N V.Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis[J]. Plant Physiology, 2003, 133: 1220-1228. |
[51] | Sawaki Y, Iuchi S, Kobayashi Y, et al.STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities[J]. Plant Physiology, 2009, 150: 281-294. |
[52] | Yamaji N, Huang C, Nagao S, et al.A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice[J]. The Plant Cell, 2009, 21: 3339-3349. |
[53] | Ohyama Y, Ito H, Kobayashi Y, et al.Characterization of AtSTOP1 orthologous genes in tobacco and other plant species[J]. Plant Physiology, 2013, 162: 1937-1946. |
[54] | Rushton P J, Somssich I E, Ringler P, et al.WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5): 247-258. |
[55] | Ding Z J, Yan J Y, Xu X Y, et al.WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum-induced malate secretion in Arabidopsis[J]. Plant Journal, 2013, 76: 825-835. |
[56] | Wagatsuma T, Khan M S H, Watanabe T, et al. Higher sterol content regulated by CYP51 with concomitant lower phospholipid content in membranes is a common strategy for aluminium tolerance in several plant species[J]. Journal of Experimental Botany, 2015, 66: 907-918. |
[57] | Oh M W, Roy S K, Kamal A H M, et al. Proteome analysis of roots of wheat seedlings under aluminum stress[J]. Molecular Biology Reports, 2014, 41: 671-681. |
[58] | Xia E H, Zhang H B, Sheng J,et al.The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Molecular Plant, 2017, 10(6): 866-877 |
[1] | DONG Yuan, ZHANG Yongheng, XIAO Yezi, YU Youben. Cloning of BZR1 Gene Family in Tea Plants and Molecular Mechanism Study of CsBZR1-5 Response to Drought Stress [J]. Journal of Tea Science, 2025, 45(1): 15-28. |
[2] | YANG Nan, LI Zhuan, LIU Meichen, MA Junjie, SHI Yuntao, WEI Xiangning, LIN Yangshun, MAO Yuyuan, GAO Shuilian. Studies on the Regulation of EGCG Biosynthesis in Tea Plants by Potassium Nutrition [J]. Journal of Tea Science, 2024, 44(6): 887-900. |
[3] | ZHAO Qian, LIU Qian, CAI-HE Jiayi, HE Jieqi, FANG Yunya, LIU Yuxin, CHEN Chao, ZHENG Yaodong, ZHANG Tianjing, YU Wenjuan, YANG Guang. Effects of Combined Drought and Low-temperature Stress on Photosynthetic Physiological Characteristics of Tea Plants and Simulation Prediction [J]. Journal of Tea Science, 2024, 44(6): 901-916. |
[4] | LIU Xiaolu, ZHU Yalan, YU Min, GAI Xinyue, FAN Yangen, SUN Ping, HUANG Xiaoqin. Changes in Cell Wall Structure and Photosynthetic Characteristics of Tea Leaves under Low Temperature Stress [J]. Journal of Tea Science, 2024, 44(6): 917-927. |
[5] | ZHAO Jiancheng, NI Huijing, WANG Bo, CAI Chunju, YANG Zhenya. Effect of Bamboo Density on the Physiological Growth and Tea Quality of Tea Plants under the Moso Bamboo Forest [J]. Journal of Tea Science, 2024, 44(6): 928-940. |
[6] | LU Wei, WU Xiaolong, HU Xianchun, HAO Yong, LIU Chunyan. Physiological Response of Tea Plants Inoculated with Arbuscular Mycorrhizal Fungi under Drought Stress [J]. Journal of Tea Science, 2024, 44(5): 718-734. |
[7] | CHEN Shichun, JIANG Hongyan, LIAO Shuran, CHEN Tingxu, NIU Jinzhi, WANG Xiaoqing. Genetic Diversity Analysis of Euproctis pseudoconspersa and Its Bunyavirus (EpBYV) in China [J]. Journal of Tea Science, 2024, 44(5): 793-806. |
[8] | WANG Juan, TU Yiyi, LÜ Wuyun, CHEN Yijia, LI Shipu, WANG Yuchun, CHEN Yanan. Identification of the Pathogen Causing New Twig Wilting on Tea Plants and Screening of Control Chemicals [J]. Journal of Tea Science, 2024, 44(5): 807-815. |
[9] | ZHANG Yazhen, ZHONG Sitong, CHEN Zhihui, KONG Xiangrui, SHAN Ruiyang, ZHENG Shiqin, YU Wenquan, CHEN Changsong. Study on the Synthetic Site of Caffeine in Different Etiolated Tea Germplasms [J]. Journal of Tea Science, 2024, 44(4): 575-584. |
[10] | LUO Wei, ZHANG Jiaqi, YANG Ni, HU Zhihang, HAO Jiannan, LIU Hui, TAN Shanshan, ZHUANG Jing. Identification and Tissue Expression Analysis of Sucrose Transporter (SUT) Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2024, 44(4): 585-597. |
[11] | LONG Lu, TANG Dandan, CHEN Wei, TAN Liqiang, CHEN Shengxiang, TANG Qian. Identification and Expression Pattern Analysis of STOP Gene Family in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2024, 44(3): 386-398. |
[12] | ZHANG Shuqing, GUO Jinmei, LI Jianfeng, WU Ling, WANG Xi, ZENG Zhengqun. Effects of Phosphate Solubilizing Bacteriaand Phosphate-solubilizing and Nitrogen-fixing Bacteria on Selenium and Zinc Contents in Selenium-rich Soil and Camellia sinensis Seedlings in Guizhou [J]. Journal of Tea Science, 2024, 44(3): 431-442. |
[13] | QIN Yujie, GUO Mingming, CHEN Yongjing, ZHOU Li. Determination of Afidopyropen and Metabolite M440I007 in Tea Tissues by Modified QuEChERS Coupled with Ultra-high Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Journal of Tea Science, 2024, 44(3): 515-525. |
[14] | CUI Qingmei, LIANG Jinbo, MA Huijie, HU Shuangling, CHEN Qinghua, WU Liyun, HE Mengdi, WANG Liubin, TAN Licai, ZHANG Qiang, WANG Liyuan. Genetic Diversity and Population Structure Relationship Analysis of Wild Tea Germplasm Resources in Badong County, Hubei Province [J]. Journal of Tea Science, 2024, 44(2): 193-206. |
[15] | SONG Bo, JIA Peining, YE Wenqi, WU Jun, SUN Weijiang, XUE Zhihui. Physiological Differences and Expression Analysis of Wax Synthesis Related Gene WSD1 in Tea Roots Treated with Fluorine [J]. Journal of Tea Science, 2024, 44(2): 219-230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|