Journal of Tea Science ›› 2020, Vol. 40 ›› Issue (1): 113-124.doi: 10.13305/j.cnki.jts.2020.01.001
Previous Articles Next Articles
SUN Yunnan, XU Yan*, RAN Longxun, JIANG Huibing, SONG Weixi, XIA Lifei, CHEN Linbo, LIANG Mingzhi*
Received:
2019-04-02
Revised:
2019-06-18
Online:
2020-02-15
Published:
2020-02-04
CLC Number:
SUN Yunnan, XU Yan, RAN Longxun, JIANG Huibing, SONG Weixi, XIA Lifei, CHEN Linbo, LIANG Mingzhi. Transcriptome Analysis of the Tea Leaves (Camellia sinensis var. assamica) Infected by Tea Blister Blight[J]. Journal of Tea Science, 2020, 40(1): 113-124.
[1] 蒲国涛, 张锡友, 胡春学, 等. 茶树茶饼病防治研究进展[J]. 陕西农业科学, 2015, 61(5): 79-81. Pu G T, Zhang X Y, Hu C X, et al.Research advances in management of tea blister blight[J]. Shaanxi Journal of Agricultural Sciences, 2015, 61(5): 79-81. [2] 陈宗懋. 茶树病害的诊断和防治[M]. 上海: 上海科学技术出版社, 1990. Chen Z M.Diagnosis and prevention of tea tree diseases [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1990. [3] 郑国建, 高海燕. 我国茶叶产品质量安全现状分析[J]. 食品安全质量检测学报, 2015, 6(7): 2869-2872. Zheng G J, Gao H Y.The status analysis of tea quality safety in China[J]. Journal of Food Safety & Quality, 2015, 6(7): 2869-2872. [4] 谭荣荣, 毛迎新, 龚自明. 茶饼病的发生规律及病原菌的生物学特性研究[J], 湖北农业科学, 2015, 54(20): 5027-5030. Tan R R, Mao Y X, Gong Z M.Studies on the occurrence law of tea blister blight and biological characteristics of [5] 智亚楠, 陈利军, 史洪中, 等. 茶树茶饼病的综合防治研究进展[J]. 信阳农林学院学报, 2018, 28(1): 98-100. Zhi Y N, Chen L J, Shi H Z, et al.Research advances in integrated management of tea blister blight[J]. Journal of Xinyang Agriculture and Forestry University, 2018, 28(1): 98-100. [6] 赵晓珍, 王勇, 任亚峰, 等. 茶饼病病原— Zhao X Z, Wang Y, Ren Y F, et al.The morphology observation of infection process for the pathogen [7] 郭春秋, 王文龙, 吴娜. 茶饼病菌的分离培养及其刺激作用[J]. 吉首大学学报(自然科学版), 2005, 26(4): 103-108. Guo C Q, Wang W L, Wu N.Culture of [8] Tian L, Shi S, Nasir F, et al.Comparative analysis of the root transcriptomes of cultivated and wild rice varieties in response to [9] Windram O, Madhou P, McHattie S, et al. [10] Smith J E, Mengesha B, Tang H, et al.Resistance to [11] Li X, Zhu L, Tu L, et al.Lignin metabolism has a central role in the resistance of cotton to the wilt fungus [12] Ke X, Yin Z, Song N, et al.Transcriptome profiling to identify genes involved in pathogenicity of [13] Wu J, Zhang Y, Zhang H, et al.Whole genome wide expression profiles of [14] Wang Y, Zhou Z, Gao J, et al.The mechanisms of maize resistance to [15] Serrazina S, Santos C, Machado H, et al.Castanea root transcriptome in response to [16] Faino L, de Jonge R, Thomma B.P. The transcriptome of [17] 王玉春. 中国茶树炭疽菌系统发育学研究及茶树咖啡碱抗炭疽病的作用[D]. 杨凌: 西北农林科技大学, 2016. Wang Y C.Phylogenetics of [18] 冉隆洵, 玉香甩, 曾莉, 等. 云南大叶种茶树茶饼病发生及防治研究[J]. 西南农业学报, 2009, 22(3): 651-654. Ran L X, Yu X S, Ceng L, et al.Occurrence and control of [19] 李向阳, 齐普应, 陈凯, 等. 几种生物农药对高海拔茶区茶饼病的防效试验初报[J]. 茶叶学报, 2017, 58(4): 201-203. Li X Y, Qi P Y, Chen K, et al.A preliminary study on biopesticides for controlling [20] 魏朝霞, 唐嘉义. 4种生物农药对茶饼病的防效试验[J]. 贵州农业科学, 2011, 39(3): 98-100. Wei C X, Tang J Y.Control effect of four biological pesticides on [21] 吴全聪, 陈方景, 雷永宏, 等. 丽水市茶饼病发生及影响因子分析[J]. 茶叶科学, 2013, 33(2): 131-139. Wu Q C, Chen F J, Lei Y H, et al.Analysis on the occurrence and its influencing factors of tea blister blight in Lishui city[J]. Journal of Tea Science, 2013, 33(2): 131-139. [22] 王绍梅, 宋文明. 茶饼病的发生规律与综合防治[J]. 云南农业科技, 2012(4): 45-46. Wang S M, Song W M.The occurrence law of tea blister blight and its comprehensive[J]. Yunnan Agricultural Science and Technology, 2012(4): 45-46. [23] Cantu D, Vicente A, Labavitch J, et al.Strangers in the matrix: plant cell walls and pathogen susceptibility[J]. Trends in Plant Science, 2008, 13(11): 610-617. [24] Underwood W, Somerville S.Focal accumulation of defences at sites of fungal pathogen attack[J]. Journal of Experimental Botany, 2008, 59(13): 3501-3508. [25] Schulze-Lefert P.Knocking on the heaven’s wall: pathogenesis of and resistance to biotrophic fungi at the cell wall[J]. Current Opinion in Plant Biology, 2004, 7(4): 377-383. [26] Lipka V, Dittgen J, Bednarek P, et al.Pre- and postinvasion defenses both contribute to nonhost resistance in [27] 郭艳玲, 张鹏英, 郭默然, 等. 次生代谢产物与植物抗病防御反应[J]. 植物生理学报, 2012, 48(5): 429-434. Guo Y L, Zhang P Y, Guo M R, et al.Secondary metabolites and plant defence against pathogenic disease[J]. Plant Physiology Journal, 2012, 48(5): 429-434. [28] Ahuja I, Kissen R, Bones A.Phytoalexins in defense against pathogens[J]. Trends in Plant Science, 2012, 17(2): 73-90. [29] Lecourieux D, Lamotte O, Bourque S, et al.Proteinaceous and oligosaccharidic elicitors induce different calcium signatures in the nucleus of tobacco cells[J]. Cell Calcium, 2005, 38(6): 527-538. [30] Dodd A, Kudla J, Sanders D.The language of calcium signaling[J]. Annual Review of Plant Biology, 2010, 61(4): 593-620. [31] Yamakawa H, Mitsuhara I, Ito N, et al.Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant[J]. European Journal of Biochemistry, 2001, 268(14): 3916-3929. [32] Lu D, Wu S, Gao X, et al.A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(1): 496-501. [33] Seifi H, Van Bockhaven J, Angenon G, et al.Glutamate metabolism in plant disease and defense: friend or foe?[J]. Molecular Plant-microbe Interactions, 2013, 26(5): 475-485. [34] Kadotani N, Akagi A, Takatsuji H, et al.Exogenous proteinogenic amino acids induce systemic resistance in rice[J]. BMC Plant Biology, 2016, 16(1): 60. doi: 10.1186/s12870-016-0748-x. [35] 杨佳丽. L-谷氨酸对果实抗性的诱导作用及其相关机理研究[D]. 杭州: 浙江大学, 2017. Yang J L.Effect of L-glutamate on inhibiting postharvest diseases by inducing resistance in fruit and the possible defense mechanisms involved [D]. Hangzhou: Zhejiang University, 2017. [36] 何兰兰, 柴蒙亮, 韩泽刚, 等. 棉花抗枯萎病相关ERF-B3亚组转录因子的克隆与表达[J]. 西北植物学报, 2013, 33(12): 2375-2381. He L L, Cai M L, Han Z G, et al.Cloning and expression of ERF-B3 subgroup transcription factor related to resistant [37] Zhao Y, Wei T, Yin K, et al. [38] Raffaele S, Rivas S, Roby D.An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis[J]. FEBS Letters, 2006, 580(14): 3498-3504. [39] McHale N, Koning R. [40] Tian Z, Zhang Y, Liu J, et al.Novel potato C2H2-type zinc finger protein gene, [41] Zhang H, Zhao T, Zhuang P, et al.NbCZF1, a novel C2H2-type zinc finger protein, as a new regulator of SsCut-induced plant immunity in [42] AbuQamar S, Chen X, Dhawan R, et al. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to [43] Guo Y, Yu Y, Wang D, et al.GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5[J]. New Phytologist, 2009, 183(1): 62-75. [44] Mayrose M, Ekengren S, Melech-Bonfil S, et al.A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response[J]. Molecular Plant Pathology, 2006, 7(6): 593-604. |
[1] | ZHU Qian, SHAO Chenyu, ZHOU Biao, LIU Shuoqian, LIU Zhonghua, TIAN Na. Identification of Tea ICE Gene Family and Cloning and Expression Analysis of CsICE43 under Low-temperature [J]. Journal of Tea Science, 2025, 45(1): 43-60. |
[2] | YIN Minghua, ZHANG Mutong, XU Zilin, OUYANG Qian, WANG Meixuan, LI Wenting. Analysis of the Structural Characteristics and Codon Usage Biase of the Mitochondrial Genome in Tea Cultivar ‘Damianbai’ [J]. Journal of Tea Science, 2025, 45(1): 61-78. |
[3] | XU Wenluan, WEN Xiaoju, JIA Yuxuan, NI Dejiang, WANG Mingle, CHEN Yuqiong. Identification of Pectin Methylesterase and Its Inhibitory Subfamily Genes, and Functional Analysis of CsPME55 in Response to Fluoride Stress in Camellia sinensis [J]. Journal of Tea Science, 2024, 44(6): 869-886. |
[4] | LUO Wei, ZHANG Jiaqi, YANG Ni, HU Zhihang, HAO Jiannan, LIU Hui, TAN Shanshan, ZHUANG Jing. Identification and Tissue Expression Analysis of Sucrose Transporter (SUT) Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2024, 44(4): 585-597. |
[5] | YIN Minghua, ZHANG Jiaxin, LE Yun, HE Fanfan, HUANG Tianhui, ZHANG Mutong. Genomic Characteristics, Codon Preference, and Phylogenetic Analysis of Chloroplasts of Camellia sinensis cv. ‘Damianbai’ [J]. Journal of Tea Science, 2024, 44(3): 411-430. |
[6] | ZHONG Sitong, ZHANG Yazhen, YOU Xiaomei, CHEN Zhihui, KONG Xiangrui, LIN Zhenghe, WU Huini, JIN Shan, CHEN Changsong. Identification of CAB Gene Family and Excavation of Key Genes Related to Leaf Yellowing Variationin Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2024, 44(2): 175-192. |
[7] | HUANG Mengdi, CHEN Lan, SU Qin, HU Jinyu, LIU Guizhi, TAN Yueping, LIU Shuoqian, TIAN Na. The Development of CAPS Molecular Markers for CsAL1, A Gene Associated with Early and Late Spring Tip Emergence in Tea Plants [J]. Journal of Tea Science, 2024, 44(2): 207-218. |
[8] | LI Qinghui, LI Rui, WEN Xiaoju, NI Dejiang, WANG Mingle, CHEN Yuqiong. Selection and Validation of Internal Reference Genes for qRT-PCR Analysis under Fluoride Stress in Camellia sinensis Leaves [J]. Journal of Tea Science, 2024, 44(1): 27-36. |
[9] | WU Shuhua, MAO Kaiquan, CHEN Jiaming, LI Jianlong, XUE Jinghua, ZENG Lanting, YANG Yuhua, GU Dachuan. Study on the Influence of Tea Green Leafhopper Infestation on the Tenderness of Fresh Tea Leaves and the Extraction Rate of Metabolites Related to Oolong Tea Quality [J]. Journal of Tea Science, 2023, 43(6): 806-822. |
[10] | MAO Chun, HE Ji, WEN Xuefeng, WU Chuanmei, YI Chengxi, LIAN Jianhong, GUO Wenmin. Advances in the Application of Metabolomics in the Study of Physiological and Biochemical Metabolism of Tea Plants [Camellia sinensis (L.) O. Kuntze] [J]. Journal of Tea Science, 2023, 43(5): 607-620. |
[11] | ZENG Hongzhe, PENG Liyuan, WAN Liwei, LIU Changwei, FANG Wenwen, WANG Kuofei, ZHANG Xinyi, WEN Shuai, HUANG Jian'an, LIU Zhonghua. Exploring the Potential Mechanism of Hypoglycemic Effect of Fungus Fermented Black Tea Based on Liver Transcriptomics [J]. Journal of Tea Science, 2023, 43(5): 645-656. |
[12] | LI Congcong, WANG Haoqian, YE Yufan, CHEN Yao, REN Hengze, LI Yuteng, HAO Xinyuan, WANG Xinchao, CAO Hongli, YUE Chuan. Study on the Regulation Roles of Plant Hormones on the Growth and Development of Tea Shoots in Spring [J]. Journal of Tea Science, 2023, 43(3): 335-348. |
[13] | MENG Rongjun, CHEN Liang, XU Yuan, LIN Wei, ZHOU Qiwei, XIE Yilin, LAI Dingqing, LAI Jiaye. Genetic Diversity Analysis of Tea Genetic Resources in Sanjiang, Guangxi [J]. Journal of Tea Science, 2023, 43(2): 147-158. |
[14] | CHEN Zhenyan, ZHANG Xiangqin, CHEN Lan, XIE Siyi, LIU Shuoqian, TIAN Na. Identification and Expression Pattern Analysis of NUDIX Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2023, 43(2): 159-172. |
[15] | HU Zhihang, QIN Zhiyuan, LI Jingwen, YANG Ni, CHEN Yi, LI Tong, ZHUANG Jing. Identification of the Light-harvesting Chlorophyll-protein Complex Gene CsLhcb2 and Its Response to Low Temperature in Tea Plants [J]. Journal of Tea Science, 2023, 43(2): 183-193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|