






Journal of Tea Science ›› 2026, Vol. 46 ›› Issue (1): 1-19.
• Research Paper • Next Articles
LIU Enbei1,2, WU Yedie1,2, XU Miaomiao1,2, LING Mingxing1,2, PENG Jing1,2, WANG Jie1,2, WANG Xinchao1,2, WANG Lu1,2,*
Received:2025-09-01
Revised:2025-09-22
Online:2026-02-15
Published:2026-02-06
CLC Number:
LIU Enbei, WU Yedie, XU Miaomiao, LING Mingxing, PENG Jing, WANG Jie, WANG Xinchao, WANG Lu. Identification and Expression Regulation Analysis of the CsWCOR413 Gene Family in Camellia sinensis[J]. Journal of Tea Science, 2026, 46(1): 1-19.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
| [1] Ding Y L, Shi Y T, Yang S H.Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants[J]. New Phytologist, 2019, 222(4): 1690-1704. [2] 陈思琪, 孙敬爽, 麻文俊, 等. 植物低温胁迫调控机制研究进展[J]. 中国农学通报, 2022, 38(17): 51-61. Chen S Q, Sun J S, Ma W J, et al.Regulation mechanism of low temperature stress on plants: research progress[J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 51-61. [3] Thomashow M F.So what’s new in the field of plant cold acclimation? Lots![J]. Plant Physiology, 2001, 125(1): 89-93. [4] Liu B, Wang X Y, Cao Y, et al.Factors affecting freezing tolerance: a comparative transcriptomics study between field and artificial cold acclimations in overwintering evergreens[J]. The Plant Journal, 2020, 103(6): 2279-2300. [5] Shi Y T, Yang S H.COLD1: a cold sensor in rice[J]. Science China Life Sciences, 2015, 58(4): 409-410. [6] Hao X Y, Tang H, Wang B, et al.Integrative transcriptional and metabolic analyses provide insights into cold spell response mechanisms in young shoots of the tea plant[J]. Tree Physiology, 2018, 38(11): 1655-1671. [7] Wang L, Feng X, Yao L N, et al.Characterization of CBL-CIPK signaling complexes and their involvement in cold response in tea plant[J]. Plant Physiology and Biochemistry, 2020, 154: 195-203. doi: 10.1016/j.plaphy. 2020.06.005. [8] Wang L, Yao L N, Hao X Y, et al.Transcriptional and physiological analyses reveal the association of ROS metabolism with cold tolerance in tea plant[J]. Environmental and Experimental Botany, 2019, 160: 45-58. doi: 10.1016/j.envexpbot.2018.11.011. [9] Di T M, Wu Y D, Feng X, et al.CIPK11 phosphorylates GSTU23 to promote cold tolerance in Camellia sinensis[J]. Plant, Cell & Environment, 2024, 47(12): 4786-4799. [10] Di T M, Wu Y D, Wang J, et al.CsCIPK20 improves tea plant cold tolerance by modulating ascorbic acid synthesis through attenuation of CsCSN5-CsVTC1 interaction[J]. Plant, Cell & Environment, 2025, 48(5): 3337-3351. [11] Wang Y, Jiang C J, Li Y Y, et al.CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis[J]. Plant Cell Reports, 2012, 31(1): 27-34. [12] Peng J, Li N N, Di T M, et al.The interaction of CsWRKY4 and CsOCP3 with CsICE1 regulates CsCBF1/3 and mediates stress response in tea plant (Camellia sinensis)[J]. Environmental and Experimental Botany, 2022, 199: 104892. doi: 10.1016/j.envexpbot.2022.104892. [13] Guo X Y, Zhang L, Dong G Q, et al.A novel cold-regulated protein isolated from Saussurea involucrata confers cold and drought tolerance in transgenic tobacco (Nicotiana tabacum)[J]. Plant Science, 2019, 289: 110246. doi: 10.1016/j.plantsci.2019.110246. [14] Breton G, Danyluk J, Charron J B F, et al. Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and Arabidopsis[J]. Plant Physiology, 2003, 132(1): 64-74. [15] Okawa K, Nakayama K, Kakizaki T, et al.Identification and characterization of Cor413im proteins as novel components of the chloroplast inner envelope[J]. Plant, Cell & Environment, 2008, 31(10): 1470-1483. [16] 丁小玲, 张宁波, 焦淑珍, 等. 山葡萄COR413家族基因克隆及其参与低温胁迫的表达分析[J]. 农业生物技术学报, 2017, 25(3): 366-377. Ding X L, Zhang N B, Jiao S Z, et al.Cloning and expression analysis of COR413 family genes from Vitis amurensis in response to cold stress[J]. Journal of Agricultural Biotechnology, 2017, 25(3): 366-377. [17] 王鹏洋, 韩子昂, 翟玉欢, 等. 水曲柳(Fraxinus mandshurica)COR413基因的克隆及表达模式分析[J]. 分子植物育种, 2019, 17(24): 8065-8071. Wang P Y, Han Z A, Zhai Y H, et al.Cloning and expression pattern analysis of COR413 gene in Fraxinus mandshurica[J]. Molecular Plant Breeding, 2019, 17(24): 8065-8071. [18] 王鹏飞, 任相亮, 陈曦, 等. 水稻新型潜在冷调节蛋白的生物信息学预测与分析[J]. 安徽农业大学学报, 2011, 38(1): 6-13. Wang P F, Ren X L, Chen X, et al.Prediction and analysis for new potential rice cold regulated proteins based on bioinformatic method[J]. Journal of Anhui Agricultural University, 2011, 38(1): 6-13. [19] 苏晨. 拟南芥、水稻膜定位蛋白COR413-PM1通过ABA信号途径调节植物抗逆反应的功能分析[D]. 杨凌: 西北农林科技大学, 2018. Su C.Functional analysis of membrane localization protein COR413-PM1 regulating plant stress resistance through ABA signaling pathway in Arabidopsis thaliana and rice [D]. Yangling: Northwest A & F University, 2018. [20] 刘媛君. 黄瓜冷适应蛋白基因CsWCOR413PM的克隆及干扰载体的构建[D]. 天津: 天津农学院, 2020. Liu Y J.Cloning of cucumber cold adaptation protein gene CsWCOR413PM and construction of its interference vector [D]. Tianjin: Tianjin Agricultural University, 2020. [21] 王璐瑶, 丁美云, 孙玉婷, 等. 油菜素内酯对低温胁迫下冬小麦wcor413-like基因表达的影响[J]. 麦类作物学报, 2023, 43(4): 463-469. Wang L Y, Ding M Y, Sun Y T, et al.Regulation of wcor413-like gene expression in winter wheat by low temperature and brassinosteroids[J]. Journal of Triticeae Crops, 2023, 43(4): 463-469. [22] 秦华, 眭顺照, 李名扬, 等. 蜡梅Chimonanthus praecox(L.) Link COR413蛋白基因(Cpcor413pm1)的分子特性与表达分析[J]. 中国生物化学与分子生物学报, 2006(7): 547-552. Qin H, Sui S Z, Li M Y, et al.Molecular characterization and expression analysis of a novel COR413 gene from wintersweet [Chimonanthus praecox(L.) Link][J]. Chinese Journal of Biochemistry and Molecular Biology, 2006(7): 547-552. [23] Ruibal C, Castro A, Fleitas A L, et al.A chloroplast COR413 protein from Physcomitrella patens is required for growth regulation under high light and ABA responses[J]. Frontiers in Plant Science, 2020, 11: 845. doi: 10.3389/fpls.2020.00845. [24] Danyluk J, Carpentier E, Sarhan F.Identification and characterization of a low temperature regulated gene encoding an actin-binding protein from wheat[J]. FEBS Letters, 1996, 389(3): 324-327. [25] Zhang H W, Liu W, Wan L Y, et al.Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice[J]. Transgenic Research, 2010, 19(5): 809-818. [26] Gao S M, Zhang H W, Tian Y, et al.Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity[J]. Plant Cell Reports, 2008, 27(11): 1787-1795. [27] Lyu J I, Ramekar R, Kim J M, et al.Unraveling the complexity of faba bean (Vicia faba L.) transcriptome to reveal cold-stress-responsive genes using long-read isoform sequencing technology[J]. Scientific Reports, 2021, 11(1): 21094. doi: 10.1038/s41598-021-00506-0. [28] Chen S, Wang P J, Kong W L, et al.Gene mining and genomics-assisted breeding empowered by the pangenome of tea plant Camellia sinensis[J]. Nature Plants, 2023, 9(12): 1986-1999. [29] Katoh K, Standley D M.MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Molecular Biology and Evolution, 2013, 30(4): 772-780. [30] Kumar S, Stecher G, Tamura K.MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874. [31] Price M N, Dehal P S, Arkin A P.FastTree 2: approximately maximum-likelihood trees for large alignments[J]. PLoS One, 2010, 5(3): e9490. doi: 10.1371/journal.pone.0009490. [32] Hao X Y, Horvath D P, Chao W S, et al.Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)[J]. International Journal of Molecular Sciences, 2014, 15(12): 22155-22172. [33] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the <inline-graphic xlink:href="1000-369X-46-1-1/img_1.wmf"/> method[J]. Methods, 2001, 25(4): 402-408. [34] Wang L, Di T M, Peng J, et al.Comparative metabolomic analysis reveals the involvement of catechins in adaptation mechanism to cold stress in tea plant (Camellia sinensis var. sinensis)[J]. Environmental and Experimental Botany, 2022, 201: 104978. doi: 10.1016/j.envexpbot.2022.104978. [35] Yao L N, Ding C Q, Hao X Y, et al.CsSWEET1a and CsSWEET17 mediate growth and freezing tolerance by promoting sugar transport across the plasma membrane[J]. Plant & Cell Physiology, 2020, 61(9): 1669-1682. [36] Li F F, Zhao N, Li Z H, et al.A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana[J]. PLoS Pathogens, 2017, 13(2): e1006213. doi: 10.1371/journal.ppat.1006213. [37] Wang J G, Dai S Y, Sun H W, et al.The N-terminal and third transmembrane domain of PsCor413im1 are essential for targeting to chloroplast envelope membrane[J]. Biochemical and Biophysical Research Communications, 2020, 527(4): 929-934. [38] Liu J L, Wang F T, Yu G, et al.Functional analysis of the maize C-repeat/DRE motif-binding transcription factor CBF3 promoter in response to abiotic stress[J]. International Journal of Molecular Sciences, 2015, 16(6): 12131-12146. [39] Hu Z, Ban Q Y, Hao J, et al.Genome-wide characterization of the C-repeat binding factor (CBF) gene family involved in the response to abiotic stresses in tea plant (Camellia sinensis)[J]. Frontiers in Plant Science, 2020, 11: 921. doi: 10.3389/fpls.2020.00921. [40] Panchy N, Lehti-shiu M, Shiu S H. Evolution of gene duplication in plants[J]. Plant Physiology, 2016, 171(4): 2294-2316. [41] Guo D L, Li Y, Lu H Y, et al.A pangenome reference of wild and cultivated rice[J]. Nature, 2025, 642(8068): 662-671. [42] Han Z L, Zhang C, Zhang H, et al.CsMYB transcription factors participate in jasmonic acid signal transduction in response to cold stress in tea plant (Camellia sinensis)[J]. Plants, 2022, 11(21): 2869. doi: 10.3390/plants11212869. [43] Wang Y L, Tong W, Li F D, et al.LUX ARRHYTHMO links CBF pathway and jasmonic acid metabolism to regulate cold tolerance of tea plants[J]. Plant Physiology, 2024, 196(2): 961-978. [44] Jin J Y, Zhao M Y, Jing T T, et al.(Z)-3-hexenol integrates drought and cold stress signaling by activating abscisic acid glucosylation in tea plants[J]. Plant Physiology, 2023, 193(2): 1491-1507. [45] 黄玉婷, 钱文俊, 王博, 等. 外源Ca2+及钙离子信号抑制剂对茶树抗寒性的影响[J]. 茶叶科学, 2015, 35(6): 520-526. Huang Y T, Qian W J, Wang B, et al.Effects of exogenous calcium and inhibitors of calcium signaling transduction pathway on cold resistance of tea plant[J]. Journal of Tea Science, 2015, 35(6): 520-526. [46] Kopeć P, Rapacz M, Arora R.Post-translational activation of CBF for inducing freezing tolerance[J]. Trends in Plant Science, 2022, 27(5): 415-417. [47] Zhang X C, Cao X J, Xia Y H, et al.CsCBF5 depletion impairs cold tolerance in tea plants[J]. Plant Science, 2022, 325: 111463. doi: 10.1016/j.plantsci.2022.111463. |
| [1] | ZHANG Yunfan, ZHOU Fengjue, HU Junming, SONG Chuankui, ZHENG Fuhai, ZHANG Junhui, LI Tingting, LI Yuxiang. Plasma-Activated Sodium Lactate Enhances Secondary Metabolites and Physiological Resistance of Young Tea Plants [J]. Journal of Tea Science, 2026, 46(1): 61-72. |
| [2] | LU Li, SHI Yin, WANG Yanxia, HUANG Xiaozhen. Comparative Analysis of Seed Biological Characteristics and Endophytic Bacterial Diversity among Different Individual Plants of Ancient Tea Plants (Camellia sinensis) in Tongzi, Guizhou [J]. Journal of Tea Science, 2025, 45(6): 943-956. |
| [3] | WANG Juan, TU Yiyi, LÜ Wuyun, CHEN Yijia, LI Shipu, WANG Yuchun, CHEN Yanan. Identification of the Pathogen Causing New Twig Wilting on Tea Plants and Screening of Control Chemicals [J]. Journal of Tea Science, 2024, 44(5): 807-815. |
| [4] | ZHANG Yazhen, ZHONG Sitong, CHEN Zhihui, KONG Xiangrui, SHAN Ruiyang, ZHENG Shiqin, YU Wenquan, CHEN Changsong. Study on the Synthetic Site of Caffeine in Different Etiolated Tea Germplasms [J]. Journal of Tea Science, 2024, 44(4): 575-584. |
| [5] | GUO Lina, HAO Xinyuan, WANG Lu, QI Meng, LI Xiaoman, REN Hengze, ZHENG Qinghua, WANG Xinchao, ZENG Jianming. Study on the Characteristics of CsPHT1;3 and Its Response to Selenium in Tea Plants [J]. Journal of Tea Science, 2023, 43(2): 173-182. |
| [6] | HU Zhihang, QIN Zhiyuan, LI Jingwen, YANG Ni, CHEN Yi, LI Tong, ZHUANG Jing. Identification of the Light-harvesting Chlorophyll-protein Complex Gene CsLhcb2 and Its Response to Low Temperature in Tea Plants [J]. Journal of Tea Science, 2023, 43(2): 183-193. |
| [7] | CHENG Kaixin, YANG Kaixin, DENG Yayuan, LI Xin, LIU Enbei, WANG Yuchun, LÜ Wuyun. Pathogenicity and Fungicide Sensitivity of Colletotrichum camelliae from Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2023, 43(1): 55-66. |
| [8] | CHEN Siwen, KANG Rui, GUO Zhiyuan, ZHOU Qiongqiong, FENG Jiancan. Cloning and Expression Analysis of CsCML16 in Tea Plants (Camellia sinensis) under Low Temperature Stress [J]. Journal of Tea Science, 2021, 41(3): 315-326. |
| [9] | LIU Dingding, WANG Junya, TANG Rongjin, CHEN Liang, MA Chunlei. Genome-wide Identification of PPR Gene Family and Expression Analysis of Albino Related Genes in Tea Plants [J]. Journal of Tea Science, 2021, 41(2): 159-172. |
| [10] | HUANG Fangfang, LI Qin, HUANG Jian'an. Research Progress of Tea Rhizosphere Microorganisms [J]. Journal of Tea Science, 2020, 40(6): 715-723. |
| [11] | YAN Fei, JIANG Wenhua, QU Dong, FU Jing, ZHAO Xuan. Effects of Exogenous 5-aminolevulinic Acid on Photosynthetic and Physiological Characteristics of Tea Plants under Low Temperature Stress [J]. Journal of Tea Science, 2020, 40(5): 597-606. |
| [12] | SU Jingjing, RUAN Li, WANG Liyuan, WEI Kang, WU Liyun, BAI Peixian, CHENG Hao. Early Identification of Nitrogen Absorption Efficiency in Tea Plants [J]. Journal of Tea Science, 2020, 40(5): 576-587. |
| [13] | CHEN Linmu, CHEN Jingguang, WANG Ningning, ZHANG Xianchen. The Role of Plasma Membrane H+-ATPase on Nitrogen-regulated Phosphorus Uptake in Tea Plants [J]. Journal of Tea Science, 2019, 39(6): 723-730. |
| [14] | WANG Yingzi, LI Yinhua, CHEN Jinhua, LIU Zhonghua, HUANG Jian'an. Effects of Exogenous Nitric Oxide on Physiological Characteristics of Tea Plants Under Cold Stress [J]. Journal of Tea Science, 2019, 39(3): 335-341. |
| [15] | WANG Feng, SHAN Ruiyang, CHEN Yuzhen, LIN Dongliang, ZANG Chunrong, CHEN Changsong, YOU Zhiming, YU Wenquan. A Case Study of Cadmium Distribution in Soil-Tea Plant-Tea Soup System in Central Fujian Province and Relative Health Risk Assessment [J]. Journal of Tea Science, 2018, 38(5): 537-546. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||