[1] 夏恩华, 韦朝领, 宛晓春. 茶树生物学“十三五”进展及“十四五”发展方向[J]. 中国茶叶, 2021, 43(9): 31-41. Xia E H, Wei C L, Wan X C.Tea plant biology progress during the 13th five-year plan period and development direction in the 14th five-year plan period[J]. China Tea, 2021, 43(9): 31-41. [2] Dong Y H, Wu X, Han L, et al.The potential roles of dietary anthocyanins in inhibiting vascular endothelial cell senescence and preventing cardiovascular diseases[J]. Nutrients, 2022, 14(14): 2836. doi: 10.3390/nu14142836. [1] Lü H P, Dai W D, Tan J F, et al.Identification of the anthocyanins from the purple leaf coloured tea cultivar Zijuan (Camellia sinensis var. assamica) and characterization of their antioxidant activities[J]. Journal of Functional Foods, 2015, 17: 449-458. doi: 10.1016/j.jff.2015.05.043. [2] Singh K, Kumar S, Rani A, et al.Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea[J]. Functional & Integrative Genomics, 2009, 9(1): 125-134. [3] Rani A, Singh K, Sood P, et al.p-Coumarate: CoA ligase as a key gene in the yield of catechins in tea [Camellia sinensis (L.) O. Kuntze][J]. Functional & Integrative Genomics, 2009, 9(2): 271-275. [4] Singh K, Rani A, Kumar S, et al.Early gene of the flavonoid pathway, flavanone 3-hydroxylase, exhibits a positive relationship with the concentration of catechins in tea (Camellia sinensis)[J]. Tree Physiology, 2008, 28(9): 1349-1356. [5] 马春雷, 陈亮. 茶树功能基因分离克隆研究进展[J]. 分子植物育种, 2006, 4(s1): 16-22. Ma C L, Chen L.Research progress on isolation and cloning of functional genes in tea plant[J]. Molecular Plant Breeding, 2006, 4(s1): 16-22. [6] 马春雷, 赵丽萍, 张亚丽, 等. 茶树查尔酮异构酶基因克隆及序列分析[J]. 茶叶科学, 2007, 27(2): 127-132. Ma C L, Zhao L P, Zhang Y L, et al.Molecular cloning and sequence analysis of chalcone isomerase gene of tea plant (Camellia sinensis)[J]. Jouranl of Tea Science, 2007, 27(2): 127-132. [7] 金琦芳, 陈志丹, 孙威江, 等. 茶树CsANS基因及其启动子的克隆与生物信息学分析[J]. 茶叶科学, 2016, 36(2): 219-228. Jin Q F, Chen Z D, Sun W J, et al.Cloning and bioinformatical analysis of anthocyanin synthase gene and its promoter in Camellia sinensis[J]. Journal of Tea Science, 2016, 36(2): 219-228. [8] Hong G J, Wang J, Zhang Y, et al.Biosynthesis of catechin components is differentially regulated in dark-treated tea (Camellia sinensis L.)[J]. Plant Physiology Biochemistry, 2014, 78: 49-52. doi: 10.1016/j.plaphy.2014.02.017. [9] Jiang L, Shen X, Shoji T, et al.Characterization and activity of anthocyanins in Zijuan tea (Camellia sinensis var. kitamura)[J]. Journal Agricultural Food Chemistry, 2013, 61(13): 3306-3310. [10] Lai Y S, Li S, Tang Q, et al.The dark-purple tea cultivar ‘Ziyan’ accumulates a large amount of delphinidin-related anthocyanins[J]. Journal Agricultural Food Chemistry, 2016, 64(13): 2719-2726. [11] Kerio L C, Wachira F N, Wanyoko J K, et al.Characterization of anthocyanins in Kenyan teas: extraction and identification[J]. Food Chemistry, 2012, 131(1): 31-38. [12] Saito T, Honma D, Tagashira M, et al.Anthocyanins from new red leaf tea ‘Sunrouge’[J]. Journal of Agricultural and Food Chemistry, 2011, 59(9): 4779-4782. [13] 蒋会兵, 夏丽飞, 田易萍, 等. 基于转录组测序的紫芽茶树花青素合成相关基因分析[J]. 植物遗传资源学报, 2018, 19(5): 967-978. Jiang H B, Xia L F, Tian Y P, et al.Transcriptome analysis of anthocyanin synthesis related genes in purple bud tea plant[J]. Journal of Plant Genetic Resources, 2018, 19(5): 967-978. [14] Wang Y Q, Jin J Q, Zhang R, et al. Association analysis of BSA-seq, BSR-seq, and RNA-seq reveals key genes involved in purple leaf formation in a tea population (Camellia sinensis) [J]. Horticulture Research, 2024, 11(9): uhae191. doi: 10.1093/hr/uhae191. [15] Wei K, Wang L, Zhang Y, et al.A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea[J]. Plant Journal, 2019, 97(5): 825-840. [16] 李智. 不同环境因子调控茶树紫色芽叶形成的分子机制研究[D]. 泰安: 山东农业大学, 2014. Li Z.Research on the molecular mechanism of different environmental factors regulating the formation of purple buds and leaves in tea tree [D]. Tai'an: Shandong Agricultural University, 2014. [17] Li W, Tan L Q, Zou Y, et al.The effects of ultraviolet A/B treatments on anthocyanin accumulation and gene expression in dark-purple tea cultivar ‘Ziyan’ (Camellia sinensis)[J]. Molecules, 2020, 25(2): 354. doi: 10.3390/molecules25020354. [18] Zhang K K, Lin C Y, Chen B Y, et al.A light responsive transcription factor CsbHLH89 positively regulates anthocyanidin synthesis in tea (Camellia sinensis)[J]. Scientia Horticulturae, 2024, 327: 112784. doi: 10.1016/j.scienta.2023.112784. [19] Singh K, Kumar S, Yadav S K, et al.Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis (L.) O. Kuntze][J]. Plant Biotechnology Reports, 2009, 3(1): 95-101. [20] Li X, Ahammed G J, Zhang X, et al.Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L[J]. Journal Hazardous Materials, 2021, 403: 123922. doi: 10.1016/j.jhazmat.2020.123922. [21] Lynch M, Conery J S.The evolutionary fate and consequences of duplicate genes[J]. Science, 2000, 290(5494): 1151-1155. [22] Wang P Q, Ma G L, Zhang L J, et al.A sucrose-induced MYB (SIMYB) transcription factor promoting proanthocyanidin accumulation in the tea plant (Camellia sinensis)[J]. Journal of Agricultural Food Chemistry, 2019, 67(5): 1418-1428. [23] Sawano H, Matsuzaki T, Usui T, et al.Double-stranded RNA-binding protein DRB3 negatively regulates anthocyanin biosynthesis by modulating PAP1 expression in Arabidopsis thaliana[J]. Journal of Plant Research, 2017, 130(1): 45-55. [24] Zhou H, Chen B Y, Du Y Y, et al.CsMYB308 as a repressive transcription factor inhibits anthocyanin biosynthesis in tea plants[J]. Plant Physiology Biochemistry, 2025, 222: 109662. doi: 10.1016/j.plaphy. 2025.109662. [25] 笈小龙. ChMYB1调控欧李花青素合成的分子机制[D]. 哈尔滨: 东北林业大学, 2023. Ji X L.Molecular mechanism of ChMYB1 regulating Cerasus humilis anthocyanin synthesis [D]. Harbin: Northeast Forestry University, 2023. [26] 苏鸿锋. 茶树花青素合成酶基因的表达特征及上游MYB调控因子鉴定[D]. 广州: 华南农业大学, 2024. Su H F.Research on the expression of anthocyanin synthase gene and identification of its upstream MYB regulatorys in tea plants (Camellia sinensis) [D]. Guangzhou: South China Agricultural University, 2024. [27] Mariyam S, Kumar V, Roychoudhury A, et al.Functional diversification and mechanistic insights of MYB transcription factors in mediating plant growth and development, secondary metabolism, and stress responses[J]. Journal of Plant Growth Regulation, 2025, 44(4): 1465-1484. [28] Fang F, Zhang X L, Luo H H, et al.An intracellular laccase is responsible for epicatechin-mediated anthocyanin degradation in litchi fruit pericarp[J]. Plant Physiology, 2015, 169(4): 2391-2408. [29] Zipor G, Duarte P, Carqueijeiro I, et al.In planta anthocyanin degradation by a vacuolar class Ⅲ peroxidase in Brunfelsia calycina flowers[J]. New Phytologist, 2015, 205(2): 653-665. [30] Maritim T K, Korir R K, Nyabundi K W, et al.Molecular regulation of anthocyanin discoloration under water stress and high solar irradiance in pluckable shoots of purple tea cultivar[J]. Planta, 2021, 254(5): 85. doi: 10.1007/s00425- 021-03736-8. [31] Ruan H X, Shi X X, Gao L P, et al. Functional analysis of the dihydroflavonol 4-reductase family of Camellia sinensis: exploiting key amino acids to reconstruct reduction activity [J]. Horticultura Research, 2022, 9: uhac098. doi: 10.1093/hr/uhac098. [32] Zhang C Y, Liu H R, Wang J Y, et al. A key mutation in magnesium chelatase I subunit leads to a chlorophyll-deficient mutant of tea (Camellia sinensis) [J]. Jounal Experimental Botany, 2024, 75(3): 935-946. [33] Ma Y Y, Shi J C, Wang D J, et al.A point mutation in the gene encoding magnesium chelatase I subunit influences strawberry leaf color and metabolism[J]. Plant Physiology, 2023, 192(4): 2737-2755. [34] Yoshida K, Ma D, Constabel C P.The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes[J]. Plant Physiology, 2015, 167(3): 693-710. [35] Xu W J, Dubos C, Lepiniec L.Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J]. Trends Plant Science, 2015, 20(3): 176-185. [36] Huang D, Tang Z Z, Fu J L, et al.CsMYB3 and CsRuby1 form an ‘activator-and-repressor’ loop for the regulation of anthocyanin biosynthesis in Citrus[J]. Plant and Cell Physiology, 2020, 61(2): 318-330. [37] Li P H, Fu J M, Xu Y J, et al.CsMYB1 integrates the regulation of trichome development and catechins biosynthesis in tea plant domestication[J]. New Phytologist, 2022, 234(3): 902-917. [38] Zhao X C, Li P, Zuo H, et al.CsMYBL2 homologs modulate the light and temperature stress-regulated anthocyanin and catechins biosynthesis in tea plants (Camellia sinensis)[J]. Plant Journal, 2023, 115(4): 1051-1070. [3] 孙彬妹. 茶树MYB转录因子CsAN1调控花青素的作用机制研究[D]. 广州: 华南农业大学, 2016. Sun B M.Research on the mechanism of action of tea tree MYB transcription factor CsAN1 in regulating anthocyanins [D]. Guangzhou: South China Agricultural University, 2016. |