Journal of Tea Science ›› 2013, Vol. 33 ›› Issue (3): 212-220.doi: 10.13305/j.cnki.jts.2013.03.007
Previous Articles Next Articles
ZHU Quan-wu, FAN Kai, XIE Yan-lan, DONG Ji-fen, Zhan Yu-wen, LUO Yao-ping*
Received:
2012-11-02
Revised:
2012-12-18
Online:
2013-06-30
Published:
2019-09-04
CLC Number:
ZHU Quan-wu, FAN Kai, XIE Yan-lan, DONG Ji-fen, Zhan Yu-wen, LUO Yao-ping. Progress in Plant Cold-stress-responsive miRNAs and the Application in Cold Resistance Research of Camellia sinensis[J]. Journal of Tea Science, 2013, 33(3): 212-220.
[1] | Bartel D P.MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297. |
[2] | Carrington J C, Ambros V.Role of microRNAs in plant and animal development[J]. Science, 2003, 301(5631): 336-338. |
[3] | Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and their regulatory roles in plants[J]. Annual Review of Plant Biology, 2006, 57: 19-53. |
[4] | He L, Hannon G J.MicroRNAs: small RNAs with a big role in gene regulation[J]. Nature Reviews Genetics, 2004, 5(7): 522-531. |
[5] | Rosalind C Lee, Rhonda L Feinbaum, Victor Anbros.The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75: 843-854. |
[6] | Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772): 901-906. |
[7] | Griffiths-Jones S, Saini H K, van Dongen S, et al. miRBase: tools for microRNA genomics[J]. Nucleic Acids Research, 2008, 36(Database issue): D154-D158. |
[8] | Naqvi A R, Sarwat M, Hasan S, et al. Biogenesis, functions and fate of plant microRNAs[J]. Journal of Cellular Physiology, 2012, 227(9): 3163-3168. |
[9] | Zhang B, Pan X, Cannon C H, et al. Conservation and divergence of plant microRNA genes[J]. Plant Journal, 2006, 46(2): 243-259. |
[10] | 方福德. microRNA的研究方法与应用[M]. 北京: 中国协和医科大学出版社, 2008: 16-17. |
[11] | Brodersen P, Voinnet O.Revisiting the principles of microRNA target recognition and mode of action[J]. Nature Reviews Molecular Cell Biologyl, 2009, 10(2): 141-148. |
[12] | Chen X.A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J]. Science, 2004, 303(5666): 2022-2025. |
[13] | Mallory A C, Vaucheret H.Functions of microRNAs and related small RNAs in plants[J]. Nature Genetics, 2006, 386: S31-S36. |
[14] | Sunkar R, Li Y F, Jagadeeswaran G.Functions of microRNAs in plant stress responses[J]. Trends in Plant Science, 2012, 17(4): 196-203. |
[15] | Sunkar R, Zhu J K.Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell, 2004, 16(8): 2001-2019. |
[16] | Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J]. Molecular Cell, 2004, 14(6): 787-799. |
[17] | Li W X, Oono Y, Zhu J, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance[J]. Plant Cell, 2008, 20(8): 2238-2251. |
[18] | Kulcheski F R, de Oliveira L F, Molina L G, et al. Identification of novel soybean microRNAs involved in abiotic and biotic stresses[J]. BMC Genomics, 2011, 12: 307. |
[19] | Ding D, Zhang L, Wang H, et al. Differential expression of miRNAs in response to salt stress in maize roots[J]. Annals of Botany, 2009, 103(1): 29-38. |
[20] | Thiebaut F, Rojas C A, Almeida K L, et al. Regulation of miR319 during cold stress in sugarcane[J]. Plant Cell and Environment, 2012, 35(3): 502-512. |
[21] | Naqvi A R, Sarwat M, Hasan S, et al. Biogenesis, functions and fate of plant microRNAs[J]. Journal of Cellular Physiology, 2012, 227(9): 3163-3168. |
[22] | Chinnusamy V, Zhu J, Sunkar R.Gene Regulation During Cold Stress Acclimation in Plants[M]. Plant Stress Tolerance, Sunkar R: Humana Press, 2010: 639, 39. |
[23] | Knight M R.Signal transduction leading to low-temperature tolerance in Arabidopsis thaliana[J]. Philosophical Transactions of the Royal Society of London Series B-biological Sciences, 2002, 357(1423): 871-875. |
[24] | 计淑霞, 戴绍军, 刘炜. 植物应答低温胁迫机制的研究进展[J]. 生命科学, 2010, 22(10): 1013-1019. |
[25] | Heidarvand L, Maali Amiri R.What happens in plant molecular responses to cold stress?[J]. Acta Physiologiae Plantarum, 2010, 32(3): 419. |
[26] | Guy C.Molecular responses of plants to cold shock and cold acclimation[J]. Journal of Molecular Microbiology and Biotechnology, 1999, 1(2): 231-242. |
[27] | Choi H, Hong J, Ha J, et al. ABFs, a family of ABA-responsive element binding factors[J]. Journal of Biological Chemistry, 2000, 275(3): 1723-1730. |
[28] | Stockinger E J, Gilmour S J, Thomashow M F.Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proceedings of The National Academy of Sciences of The United States of America, 1997, 94(3): 1035-1040. |
[29] | Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell, 1998, 10(8): 1391-1406. |
[30] | Chinnusamy V, Ohta M, Kanrar S, et al. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes & Development, 2003, 17(8): 1043-1054. |
[31] | Badawi M, Reddy Y V, Agharbaoui Z, et al. Structure and functional analysis of wheat ICE (inducer of CBF expression) genes[J]. Plant Cell Physiol, 2008, 49(8): 1237-1249. |
[32] | Dong C H, Agarwal M, Zhang Y, et al. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. Proceedings of The National Academy of Sciences of The United States of America, 2006, 103(21): 8281-8286. |
[33] | Agarwal M, Hao Y, Kapoor A, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. Journal of Biological Chemistry, 2006, 281(49): 37636-37645. |
[34] | Kanaoka M M, Pillitteri L J, Fujii H, et al. SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to arabidopsis stomatal differentiation[J]. Plant Cell, 2008, 20(7): 1775-1785. |
[35] | Doherty C J, Van Buskirk H A, Myers S J, et al. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance[J]. Plant Cell, 2009, 21(3): 972-984. |
[36] | Lv D K, Bai X, Li Y, et al. Profiling of cold-stress-responsive miRNAs in rice by microarrays[J]. Gene, 2010, 459(1/2): 39-47. |
[37] | Zhang J, Xu Y, Huan Q, et al. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response[J]. BMC Genomics, 2009, 10: 449. |
[38] | Liu H H, Tian X, Li Y J, et al. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana[J]. RNA, 2008, 14(5): 836-843. |
[39] | Lu S, Sun Y H, Chiang V L.Stress-responsive microRNAs in Populus[J]. Plant Journal, 2008, 55(1): 131-151. |
[40] | Wu G, Poethig R S.Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[J]. Development, 2006, 133(18): 3539-3547. |
[41] | 张志明, 宋锐, 彭华, 等. 用生物信息学挖掘玉米中的microRNAs及其靶基因[J]. 作物学报, 2010, 36(8): 1324-1335. |
[42] | 李远志, 赖红华. 冻害对茶树叶片细胞亚显微结构的影响[J]. 福建茶叶, 1987(4): 6-10. |
[43] | 黄建安. 茶树保护性酶类与抗寒性的关系[J]. 茶叶科学, 1990, 10(1): 35-40. |
[44] | 杨亚军, 郑雷英, 王新超. 低温对茶树叶片膜脂脂肪酸和蛋白质的影响[J]. 亚热带植物科学, 2005, 34(1): 5-9. |
[45] | 李叶云, 庞磊, 陈启文, 等. 低温胁迫对茶树叶片生理特性的影响[J]. 西北农林科技大学学报: 自然科学版, 2012(4): 134-138. |
[46] | 邹中伟, Wan-Ping Fang, 张定, 等. 低温胁迫下茶树基因表达的差异分析[J]. 茶叶科学, 2008, 28(4): 249-254. |
[47] | 陈暄, 房婉萍, 邹中伟, 等. 茶树冷胁迫诱导抗寒基因CBF的克隆与表达分析[J]. 茶叶科学, 2009, 29(1): 53-59. |
[48] | 房婉萍, 邹中伟, 侯喜林, 等. 茶树冷胁迫诱导H1-histone基因的克隆与序列分析[J]. 西北植物学报, 2009(8): 1514-1519. |
[49] | 陈林波, 李叶云, 房超, 等. 茶树冷诱导基因的AFLP筛选及其表达分析[J]. 西北植物学报, 2011, 31(1): 1-7. |
[50] | 陈林波, 房超, 王郁, 等. 茶树抗逆相关基因ERF的克隆与表达特性分析[J]. 茶叶科学, 2011, 31(1): 53-58. |
[51] | 陈林波, 李叶云, 王琴, 等. 茶树冷诱导基因RAV的克隆与表达特性分析[J]. 植物生理学通讯, 2010(4): 354-358. |
[52] | Wang L, Li X, Zhao Q, et al. Identification of Genes Induced in Response to Low-Temperature Treatment in Tea Leaves[J]. Plant Molecular Biology Reporter, 2009, 27(3): 257. |
[53] | Li X W, Feng Z G, Yang H M, et al. A novel cold-regulated gene from Camellia sinensis, CsCOR1, enhances salt- and dehydration-tolerance in tobacco[J]. Biochemical and Biophysical Research Communications, 2010, 394(2): 354-359. |
[54] | Wang Y, Jiang C J, Li Y Y, et al. CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis[J]. Plant Cell Reports, 2012, 31(1): 27-34. |
[1] | ZHU Qian, SHAO Chenyu, ZHOU Biao, LIU Shuoqian, LIU Zhonghua, TIAN Na. Identification of Tea ICE Gene Family and Cloning and Expression Analysis of CsICE43 under Low-temperature [J]. Journal of Tea Science, 2025, 45(1): 43-60. |
[2] | YIN Minghua, ZHANG Mutong, XU Zilin, OUYANG Qian, WANG Meixuan, LI Wenting. Analysis of the Structural Characteristics and Codon Usage Biase of the Mitochondrial Genome in Tea Cultivar ‘Damianbai’ [J]. Journal of Tea Science, 2025, 45(1): 61-78. |
[3] | XU Wenluan, WEN Xiaoju, JIA Yuxuan, NI Dejiang, WANG Mingle, CHEN Yuqiong. Identification of Pectin Methylesterase and Its Inhibitory Subfamily Genes, and Functional Analysis of CsPME55 in Response to Fluoride Stress in Camellia sinensis [J]. Journal of Tea Science, 2024, 44(6): 869-886. |
[4] | LUO Wei, ZHANG Jiaqi, YANG Ni, HU Zhihang, HAO Jiannan, LIU Hui, TAN Shanshan, ZHUANG Jing. Identification and Tissue Expression Analysis of Sucrose Transporter (SUT) Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2024, 44(4): 585-597. |
[5] | YIN Minghua, ZHANG Jiaxin, LE Yun, HE Fanfan, HUANG Tianhui, ZHANG Mutong. Genomic Characteristics, Codon Preference, and Phylogenetic Analysis of Chloroplasts of Camellia sinensis cv. ‘Damianbai’ [J]. Journal of Tea Science, 2024, 44(3): 411-430. |
[6] | ZHONG Sitong, ZHANG Yazhen, YOU Xiaomei, CHEN Zhihui, KONG Xiangrui, LIN Zhenghe, WU Huini, JIN Shan, CHEN Changsong. Identification of CAB Gene Family and Excavation of Key Genes Related to Leaf Yellowing Variationin Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2024, 44(2): 175-192. |
[7] | HUANG Mengdi, CHEN Lan, SU Qin, HU Jinyu, LIU Guizhi, TAN Yueping, LIU Shuoqian, TIAN Na. The Development of CAPS Molecular Markers for CsAL1, A Gene Associated with Early and Late Spring Tip Emergence in Tea Plants [J]. Journal of Tea Science, 2024, 44(2): 207-218. |
[8] | LI Qinghui, LI Rui, WEN Xiaoju, NI Dejiang, WANG Mingle, CHEN Yuqiong. Selection and Validation of Internal Reference Genes for qRT-PCR Analysis under Fluoride Stress in Camellia sinensis Leaves [J]. Journal of Tea Science, 2024, 44(1): 27-36. |
[9] | WU Shuhua, MAO Kaiquan, CHEN Jiaming, LI Jianlong, XUE Jinghua, ZENG Lanting, YANG Yuhua, GU Dachuan. Study on the Influence of Tea Green Leafhopper Infestation on the Tenderness of Fresh Tea Leaves and the Extraction Rate of Metabolites Related to Oolong Tea Quality [J]. Journal of Tea Science, 2023, 43(6): 806-822. |
[10] | MAO Chun, HE Ji, WEN Xuefeng, WU Chuanmei, YI Chengxi, LIAN Jianhong, GUO Wenmin. Advances in the Application of Metabolomics in the Study of Physiological and Biochemical Metabolism of Tea Plants [Camellia sinensis (L.) O. Kuntze] [J]. Journal of Tea Science, 2023, 43(5): 607-620. |
[11] | LI Congcong, WANG Haoqian, YE Yufan, CHEN Yao, REN Hengze, LI Yuteng, HAO Xinyuan, WANG Xinchao, CAO Hongli, YUE Chuan. Study on the Regulation Roles of Plant Hormones on the Growth and Development of Tea Shoots in Spring [J]. Journal of Tea Science, 2023, 43(3): 335-348. |
[12] | MENG Rongjun, CHEN Liang, XU Yuan, LIN Wei, ZHOU Qiwei, XIE Yilin, LAI Dingqing, LAI Jiaye. Genetic Diversity Analysis of Tea Genetic Resources in Sanjiang, Guangxi [J]. Journal of Tea Science, 2023, 43(2): 147-158. |
[13] | CHEN Zhenyan, ZHANG Xiangqin, CHEN Lan, XIE Siyi, LIU Shuoqian, TIAN Na. Identification and Expression Pattern Analysis of NUDIX Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2023, 43(2): 159-172. |
[14] | HU Zhihang, QIN Zhiyuan, LI Jingwen, YANG Ni, CHEN Yi, LI Tong, ZHUANG Jing. Identification of the Light-harvesting Chlorophyll-protein Complex Gene CsLhcb2 and Its Response to Low Temperature in Tea Plants [J]. Journal of Tea Science, 2023, 43(2): 183-193. |
[15] | GAI Shujie, WANG Yixiong, LI Lan, LIU Shuoqian, LI Yinhua, CHENG Xiao, XIA Mao, LIU Zhonghua, ZHOU Zhi. Research Progress of Tea Plant (Camellia sinensis) Growth under Light Regulation [J]. Journal of Tea Science, 2022, 42(6): 753-767. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|