






Journal of Tea Science ›› 2022, Vol. 42 ›› Issue (3): 347-357.doi: 10.13305/j.cnki.jts.2022.03.001
• Research Paper • Previous Articles Next Articles
LIU Renjian1, WANG Yuyuan1, LIU Shaoqun1, SHU Canwei2, SUN Binmei1, ZHENG Peng1,*
Received:2021-12-18
Revised:2022-01-03
Online:2022-06-15
Published:2022-06-17
CLC Number:
LIU Renjian, WANG Yuyuan, LIU Shaoqun, SHU Canwei, SUN Binmei, ZHENG Peng. Functional Identification of CsbHLH024 and CsbHLH133 Transcription Factors in Tea Plants[J]. Journal of Tea Science, 2022, 42(3): 347-357.
| [1] Werker E.Trichome diversity and development[J]. Adv Bot Res, 2000, 31: 1-35. [2] Serna L, Martin C.Trichomes: different regulatory networks lead to convergent structures[J]. Trends Plant Sci, 2006, 11(6): 274-280. [3] Schilmiller A, Last R, Pichersky E.Harnessing plant trichome biochemistry for the production of useful compounds[J]. Plant J, 2008, 54(4): 702-711. [4] Ishida T, Kurata T, Okada K, et al.A genetic regulatory network in the development of trichomes and root hairs[J]. Annu Rev Plant Biol, 2008, 59: 365-386. [5] 曹敏, 张璐, 高新梅, 等. 植物表皮毛发育分子调控机制的研究进展[J]. 安徽农业科学, 2013, 41(10): 4231-4235. Cao M, Zhang L, Gao X M, et al.Advances in molecular regulation of plant trichome development[J]. Journal of Anhui Agricultural Sciences, 2013, 41(10): 4231-4235. [6] Wagner G, Wang E, Shepherd R.New approaches for studying and exploiting an old protuberance, the plant trichome[J]. Ann Bot, 2004, 93(1): 3-11. [7] Fernandez V, Sancho-Knapik D, Guzman P, et al.Wettability, polarity, and water absorption of holm oak leaves: effect of leaf side and age[J]. Plant Physiol, 2014, 166(1): 168-180. [8] Svetlikova P, Hajek T, Tesitel J.Hydathodetrichomes actively secreting water from leaves play a key role in the physiology and evolution of root-parasitic rhinanthoid Orobanchaceae[J]. Ann Bot, 2015, 116(1): 61-68. [9] Dayan F, Duke S.Trichomes and root hairs: natural pesticide factories[J]. Pesticide Outlook, 2003, 14(4): 175. doi:10.1039/b308491b. [10] Bleeker P, Mirabella R, Diergaarde P, et al.Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative[J]. Proc Natl Acad Sci U S A, 2012, 109(49): 20124-20129. [11] Luu V, Weinhold A, Ullah C, et al.O-acyl sugars protect a wild tobacco from both native fungal pathogens and a specialist herbivore[J]. Plant physiology, 2017, 174(1): 370-386. [12] Yamasaki S, Murakami Y.Continuous UV-B irradiation induces endoreduplicationand trichome formation in cotyledons, and reduces epidermal cell division and expansion in the first leaves of pumpkin seedlings ( [13] Weathers P, Arsenault P, Covello P, et al.Artemisinin production in [14] Mellon J, Zelaya C, Dowd M, et al.Inhibitory effects of gossypol, gossypolone, and apogossypolone on a collection of economically important filamentous fungi[J]. J Agric Food Chem, 2012, 60(10): 2740-2745. [15] Chalvin C, Drevensek S, Dron M, et al.Genetic control of glandular trichome development[J]. Trends Plant Sci, 2020, 25(5): 477-487. [16] Schellmann S, Hulskamp M.Epidermal differentiation: trichomes in [17] 杨君, 马峙英, 王省芬. 棉花纤维品质改良相关基因研究进展[J]. 中国农业科学, 2016, 49(22): 4310-4322. Yang J, Ma S Y, Wang S F.Advances in studies on genes related to cotton fiber quality improvement[J]. Chinese Agricultural Sciences, 2016, 49(22): 4310-4322. [18] 唐凯. 棉花磷脂酶D基因家族的分子特征及其GhPLDα1功能分析[D]. 北京: 清华大学, 2017. Tang K.Molecular characterization of phospholipase D gene family and functional analysis of GhPLDα1 in cotton [D]. Beijing: Tsinghua University, 2017. [19] Shi Y H, Zhu S W, Mao X Z, et al.Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation[J]. Plant Cell, 2006, 18(3): 651-664. [20] Chen C, Liu M, Jiang L, et al.Transcriptome profiling reveals roles of meristem regulators and polarity genes during fruit trichome development in cucumber ( [21] Pan Y, Bo K, Cheng Z, et al.The loss-of-function [22] Liu X, Bartholomew E, Cai Y, et al.Trichome-related mutants provide a new perspective on multicellular trichome initiation and development in cucumber ( [23] Zheng K, Tian H, Hu Q, et al.Ectopic expression of R3 MYB transcription factor gene [24] Qin B, Tang D, Huang J, et al.Rice OsGL1-1 is involved in leaf cuticular wax and cuticle membrane[J]. Mol Plant, 2011, 4(6): 985-995. [25] Ming T, Bartholomew B.Theaceae[J]. Flora China, 2007, 12: 366-478. [26] 陈亮, 虞富莲, 童启庆. 关于茶组植物分类与演化的讨论[J]. 茶叶科学, 2000, 20(2): 89-94. Chen L, Yu F L, Tong Q Q.Discussion on the classification and evolution of tea plants[J]. Journal of Tea Science, 2000, 20(2): 89-94. [27] Li P, Xu Y, Zhang Y, et al.Metabolite profiling and transcriptome analysis revealed the chemical contributions of tea trichomes to tea flavors and tea plant defenses[J]. J Agric Food Chem, 2020, 68(41): 11389-11401. [28] Zhu M, Li N, Zhao M, et al.Metabolomic profiling delineate taste qualities of tea leaf pubescence[J]. Food Res Int, 2017, 94: 36-44. [29] Wei C, Yang H, Wang S, et al.Draft genome sequence of [30] Gilbert N.The science of tea's mood-altering magic[J]. Nature, 2019, 566(7742): S8-S9. [31] Cao H, Li J, Ye Y, et al.Integrative transcriptomic and metabolic analyses provide insights into the role of trichomes in tea plant ( [32] Barman T, Baruah U, Saikia J.Seasonal changes in metabolic activities of drought tolerant and susceptible clones of tea ( [33] Konrad W, Burkhardt J, Ebner M, et al.Leaf pubescence as a possibility to increase water use efficiency by promoting condensation[J]. Ecohydrology, 2015, 8(3): 480-492. [34] Das S, Zaman A, Borchetia S, et al.Genetic relationship in tea germplasms with drought contrasting traits[J]. Plant Breeding and Biotechnology, 2016, 4(4): 484-494. [35] 杨丽丽, 郑高云, 梁丽云, 等. 茶树抗病虫机制的研究进展[J]. 福建茶叶, 2008(2): 8-11. Yang L L, Zheng G Y, Liang L Y, et al.Research progress on resistance mechanism to disease and insect in tea plant[J]. Tea in Fujian, 2008(2): 8-11. [36] Dutta M.Morphological resistance of certain tea clones to red spider mite ( [37] Bandyopadhyay T, Gohain B, Bharalee R, et al.Molecular landscape of helopeltis theivora induced transcriptome and defense gene expression in tea[J]. Plant molecular biology reporter, 2015, 33(4): 1042-1057. [38] Yue C, Cao H, Chen D, et al.Comparative transcriptome study of hairy and hairless tea plant ( [39] Sun B, Zhu Z, Liu R, et al. [40] Liu R, Wang Y, Tang S, et al.Genome-wide identification of the tea plant bHLH transcription factor family and discovery of candidate regulators of trichome formation[J]. Sci Rep, 2021, 11(1): 10764. doi: 10.1038/s41598-021-90205-7. [41] Livak K, Schmittgen T.Analysis of relative gene expression data using real-time quantitative PCR and the [42] Rerie W, Feldmann K, Marks M.The [43] Luo D, Oppenheimer D.Genetic control of trichome branch number in [44] Payne C, Zhang F, Lloyd A.GL3 encodes a bHLH protein that regulates trichome development in [45] Zhang F, Gonzalez A, Zhao M, et al.A network of redundant bHLH proteins functions in all TTG1-dependent pathways of [46] Zhao M, Morohashi K, Hatlestad G, et al.The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci[J]. Development, 2008, 135(11): 1991-1999. [47] Mondal T, Bhattacharya A, Laxmikumaran M, et al.Recent advances of tea ( [48] Szymanski D, Jilk R, Pollock S, et al.Control of [49] Boeglin M, Fuglsang A, Luu D, et al.Reduced expression of [50] 张晨光. 苹果核孔蛋白MdNup54/62调控开花和高温胁迫响应功能研究[D]. 杨凌: 西北农林科技大学, 2021. Zhang C G.Study on the function of apple nuclear pore protein MDNUP54/62 in regulation of flowering and heat stress response [D]. Yangling: Northwest A&F University, 2021. |
| [1] | JIANG Li, LI Duojiao, HU Xinrong, SHEN Yingzi, ZHENG Zhaisheng, WENG Xiaoxing, LIU Shujing, BIAN Xiaodong, YUAN Ming'an, CHEN Xuan. Effects of Different Cultivation Patterns on Physiological and Biochemcial Characteristics of New Shoots in Seed-Leaf Dual-Purpose Tea Plants [J]. Journal of Tea Science, 2025, 45(5): 783-794. |
| [2] | WANG Kairong, ZHANG Longjie, LIANG Yuerong, LI Xiaoxiang, ZHENG Xinqiang. Identification and Classification of Tea Leaf Color and Establishment of A Tea Leaf Color System [J]. Journal of Tea Science, 2025, 45(5): 795-807. |
| [3] | ZHOU Yide, CHEN Jialin, WU Junmei, ZHAO Hongbo, SUN Binmei, LIU Shaoqun, ZHENG Peng. Nitrogen Metabolism Genes in Tea Plant: Research Progress on the Environmental Stress Adaptation Mechanism and Breeding Application [J]. Journal of Tea Science, 2025, 45(4): 545-558. |
| [4] | SUN Mengzhen, HU Zhihang, YANG Kaixin, ZHANG Jiaqi, ZHANG Nan, XIONG Aisheng, LIU Hui, ZHUANG Jing. Identification of Circadian Clock CsLUX Gene and Its Effects on Photosynthetic Characteristics in Tea Plants [J]. Journal of Tea Science, 2025, 45(4): 559-570. |
| [5] | ZHAI Xiuming, LI Jie, XIAO Fuliang, TANG Min, ZENG Lewu, HOU Yujia, TANG Yi. WGCNA Analysis of Differentially Expressed Genes between Parallel Variation and Normal Tea Stems and Leaves [J]. Journal of Tea Science, 2025, 45(3): 402-414. |
| [6] | ZHANG Hui, LIU Fengjing, LI Huiling, LI Liangde, WANG Qingsen, WANG Dingfeng. Metabolomics Analysis of Different Resistant Tea Cultivars Infected by Acaphylla theae in The Early Stage [J]. Journal of Tea Science, 2025, 45(3): 415-426. |
| [7] | GUO Jialu, QU Furong, CAI Tianchen, ZHAO Yang, YANG Peidi, LIU Yong, ZHOU Yuebin, LIU Zhen. Study on the Genetic Diversity of 78 Tea Germplasm Resources in Hunan Based on Agronomic Traits and SNP Molecular Markers [J]. Journal of Tea Science, 2025, 45(2): 219-233. |
| [8] | HUANG Fuyin, ZHANG Shaobo, HU Qiang, LUO Ying, DONG Yajie, ZHANG Jie, LI Xin, FU Jianyu, WANG Huasen, YAN Peng. The Impacts and Regulatory Mechanisms of Forest Conversion to Tea Plantations and Their Management on Soil Carbon and Nitrogen Pools [J]. Journal of Tea Science, 2025, 45(2): 234-252. |
| [9] | LI Yuexin, YAN Donghai, ZHANG Jinfeng, PU Yundan, LI Shuai, MENG Zehong. Identification of the L-type Lectin Receptor Kinase Gene Family in Camellia sinensis and Its Response to Tea Brown Blight and Tea Anthracnose [J]. Journal of Tea Science, 2025, 45(2): 253-265. |
| [10] | DONG Yuan, ZHANG Yongheng, XIAO Yezi, YU Youben. Cloning of BZR1 Gene Family in Tea Plants and Molecular Mechanism Study of CsBZR1-5 Response to Drought Stress [J]. Journal of Tea Science, 2025, 45(1): 15-28. |
| [11] | YANG Nan, LI Zhuan, LIU Meichen, MA Junjie, SHI Yuntao, WEI Xiangning, LIN Yangshun, MAO Yuyuan, GAO Shuilian. Studies on the Regulation of EGCG Biosynthesis in Tea Plants by Potassium Nutrition [J]. Journal of Tea Science, 2024, 44(6): 887-900. |
| [12] | ZHAO Qian, LIU Qian, CAI-HE Jiayi, HE Jieqi, FANG Yunya, LIU Yuxin, CHEN Chao, ZHENG Yaodong, ZHANG Tianjing, YU Wenjuan, YANG Guang. Effects of Combined Drought and Low-temperature Stress on Photosynthetic Physiological Characteristics of Tea Plants and Simulation Prediction [J]. Journal of Tea Science, 2024, 44(6): 901-916. |
| [13] | LIU Xiaolu, ZHU Yalan, YU Min, GAI Xinyue, FAN Yangen, SUN Ping, HUANG Xiaoqin. Changes in Cell Wall Structure and Photosynthetic Characteristics of Tea Leaves under Low Temperature Stress [J]. Journal of Tea Science, 2024, 44(6): 917-927. |
| [14] | ZHAO Jiancheng, NI Huijing, WANG Bo, CAI Chunju, YANG Zhenya. Effect of Bamboo Density on the Physiological Growth and Tea Quality of Tea Plants under the Moso Bamboo Forest [J]. Journal of Tea Science, 2024, 44(6): 928-940. |
| [15] | LU Wei, WU Xiaolong, HU Xianchun, HAO Yong, LIU Chunyan. Physiological Response of Tea Plants Inoculated with Arbuscular Mycorrhizal Fungi under Drought Stress [J]. Journal of Tea Science, 2024, 44(5): 718-734. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||