[1] |
Valmonte G R, Arthur K, Higgins C M, et al. Calcium-dependent protein kinases in plants: evolution, expression and function [J]. Plant Cell Physiol, 2014, 55(3): 551-569.
|
[2] |
Bagur R, Hajnoczky G. Intracellular Ca2+ sensing: its role in calcium homeostasis and signaling [J]. Mol Cell, 2017, 66(6): 780-788.
|
[3] |
Dupont G, Sneyd J. Recent developments in models of calcium signalling [J]. Current Opinion in Systems Biology, 2017, 3: 15-22.
|
[4] |
Schulz P, Herde M, Romeis T. Calcium-dependent protein kinases: hubs in plant stress signaling and development [J]. Plant Physiol, 2013, 163(2): 523-530.
|
[5] |
Shi S, Li S, Asim M, et al. The Arabidopsis Calcium-dependent protein kinases (CDPKs) and their roles in plant growth regulation and abiotic stress responses [J]. International Journal of Molecular Sciences 2018, 19(7). Doi: 10.3390/ijms19071900.
|
[6] |
Cheng S H, Willmann M R, Chen H C, et al. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family [J]. Plant Physiol, 2002, 129(2): 469-485.
|
[7] |
Ray S, Agarwal P, Arora R, et al. Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica) [J]. Mol Genet Genomics, 2007, 278(5): 493-505.
|
[8] |
Zuo R, Hu R, Chai G, et al. Genome-wide identification, classification, and expression analysis of CDPK and its closely related gene families in poplar (Populus trichocarpa) [J]. Mol Biol Rep, 2013, 40(3): 2645-2662.
|
[9] |
Mittal S, Mallikarjuna M G, Rao A R, et al. Comparative Analysis of CDPK Family in Maize, Arabidopsis, rice, and sorghum revealed potential targets for drought tolerance improvement [J]. Front Chem, 2017, 5: 115. Doi: 10.3389/fchem.2017.00115.
|
[10] |
张成才. 茶树育性相关基因的克隆与表达研究[D]. 武汉: 华中农业大学, 2017.
|
[11] |
Wang M, Li Q, Sun K, et al. Involvement of CsCDPK20 and CsCDPK26 in regulation of thermotolerance in tea plant (Camellia sinensis) [J]. Plant Molecular Biology Reporter, 2018, 36(2): 176-187.
|
[12] |
Li A L, Zhu Y F, Tan X M, et al. Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.) [J]. Plant Molecular Biology, 2008, 66(4): 429-443.
|
[13] |
Komatsu S, Yang G, Khan M, et al. Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants [J]. Molecular Genetics & Genomics, 2007, 277(6): 713-723.
|
[14] |
Jiang S, Zhang D, Wang L, et al. A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis [J]. Plant Physiology and Biochemistry, 2013, 71: 112-120.
|
[15] |
Franz S, Ehlert B, Liese A, et al. Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana [J]. Mol Plant, 2011, 4(1): 83-96.
|
[16] |
林郑和, 钟秋生, 游小妹, 等. 低温胁迫对茶树抗氧化酶活性的影响[J]. 茶叶科学, 2018, 38(4): 363-371.
|
[17] |
孙海伟, 曹德航, 尚涛, 等. 茶树抗寒育种及转基因研究进展[J]. 山东农业科学, 2013, 45(6): 119-122.
|
[18] |
Wei C, Yang H, Wang S, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality [J]. Proceedings of the National Academy of Sciences, 2018, 115(18): E4151-E4158.
|
[19] |
Hao X, Horvath D, Chao W, et al. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze) [J]. International Journal of Molecular Sciences, 2014, 15(12): 22155-22172.
|
[20] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–Δ?Ct method [J]. Methods, 2001, 25(4): 402-408.
|
[21] |
Liu Y, Xu C, ZhuY, et al. The calcium-dependent kinase OsCPK24 functions in cold stress responses in rice [J]. J Integr Plant Biol, 2018, 60(2): 173-188.
|
[22] |
Wang X, Zhao Q, Ma C, et al. Global transcriptome profiles of Camellia sinensis during cold acclimation [J]. Bmc Genomics, 2013, 14(1): 415. https://doi.org/10.1186/1471-2164-14-415.
|
[23] |
Rutschmann F, Stalder U, Piotrowski M, et al. LeCPK1, a calcium-dependent protein kinase from tomato. Plasma membrane targeting and biochemical characterization [J]. Plant Physiol, 2002, 129(1): 156-168.
|
[24] |
丁玉娇, 韩颖颖, 周婧雯. 棕榈酰化蛋白及蛋白质的棕榈酰化研究进展[J]. 亚热带植物科学, 2018, 47(4): 43-50.
|
[25] |
Mart??n M L, Busconi L. Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation [J]. The Plant Journal, 2000, 24(4): 429-435.
|
[26] |
T Gutermuth, R Lassig, MT Porteset, et al. Pollen tube growth regulation by free anions depends on the interaction between the anion channel SLAH3 and calcium-dependent protein kinases CPK2 and CPK20 [J]. Plant Cell, 2013, 25(11): 4525-4543.
|
[27] |
Xu X, Liu M, Lu L, et al. Genome-wide analysis and expression of the calcium-dependent protein kinase gene family in cucumber [J]. Mol Genet Genomics, 2015, 290(4): 1403-1414.
|
[28] |
Zhao L N, Shen L K, Zhang W Z, et al. Ca2+-dependent protein kinase11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes [J]. Plant Cell, 2013, 25(2): 649-661.
|
[29] |
Zou J J, Wei F J, Wang C, et al. Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress [J]. Plant Physiol, 2010, 154(3): 1232-1243.
|
[30] |
Kobayashi M, Yoshioka M, Asai S, et al. StCDPK5 confers resistance to late blight pathogen but increases susceptibility to early blight pathogen in potato via reactive oxygen species burst [J]. New Phytol, 2012, 196(1): 223-237.
|
[31] |
Asano T, Hayashi N, Kobayashi M, et al. A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance [J]. Plant J, 2012, 69(1): 26-36.
|