[1] |
Han W, Huang J G, Li X, et al.Altitudinal effects on the quality of green tea in east China: a climate change perspective[J]. European Food Research and Technology, 2017, 243(2): 323-330.
|
[2] |
Zhuang X G, Wang L L, Chen Q, et al.Identification of green tea origins by near-infrared (NIR) spectroscopy and different regression tools[J]. Science China Technological Sciences, 2017, 60(1): 84-90.
|
[3] |
陈美丽, 张俊, 龚淑英, 等. 茉莉花茶主要品质成分定量近红外光谱分析模型的建立[J]. 茶叶科学, 2013, 33(1): 21-26.
|
[4] |
刘洋, 余天星, 李明玺, 等. 基于近红外光谱技术的信阳毛尖品质判别研究[J]. 现代食品科技, 2018, 34(8): 1-7.
|
[5] |
Ouyang Q, Liu Y, Chen Q S, et al.Intelligent evaluation of color sensory quality of black tea by visible-near infrared spectroscopy technology: A comparison of spectra and color data information[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 180: 91-96. DOI: 10.1016/j.saa.2017.03.009.
|
[6] |
Jiang H, Chen Q S.Chemometric models for the quantitative descriptive sensory properties of green tea (Camellia sinensis L.) using fourier transform near infrared (FT-NIR) spectroscopy[J]. Food Analytical Methods, 2015, 8(4): 954-962.
|
[7] |
王胜鹏, 龚自明, 高士伟, 等. 基于近红外光谱技术的恩施玉露茶保存年份的快速无损鉴别[J]. 华中农业大学学报, 2015, 34(5): 111-114.
|
[8] |
Shan R F, Cai W S, Shao X G.Variable selection based on locally linear embedding mapping for near-infrared spectral analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 131: 31-36. DOI: 10.1016/j.chemolab.2013.12.002.
|
[9] |
林萍, 陈永明, 邹志勇. 非线性流形降维与近红外光谱分析技术的大米贮藏期快速判别[J]. 光谱学与光谱分析, 2016, 36(10): 3169-3173.
|
[10] |
李庆波, 贾召会. 一种光谱分析中的降维方法[J]. 光谱学与光谱分析, 2013, 33(3): 780-784.
|
[11] |
黄宏臣, 张倩倩, 韩振南, 等. 拉普拉斯特征映射算法在滚动轴承故障识别中的应用[J]. 中国测试, 2015, 41(5): 94-98.
|
[12] |
Zhang Y, Ye D, Liu Y.Robust locally linear embedding algorithm for machinery fault diagnosis[J]. Neurocomputing, 2018, 273: 323-332.
|
[13] |
金瑞, 李小昱, 颜伊芸, 等. 基于高光谱图像和光谱信息融合的马铃薯多指标检测方法[J]. 农业工程学报, 2015, 31(16): 258-263.
|
[14] |
孙伟伟, 刘春, 李巍岳. 联合改进拉普拉斯特征映射和k-近邻分类器的高光谱影像分类[J]. 武汉大学学报(信息科学版), 2015, 40(9): 1151-1156.
|
[15] |
张赟, 杨栋, 斯彦刚, 等. 基于监督流形学习的航空发动机振动故障诊断方法[J]. 推进技术, 2017, 38(5): 1147-1154.
|
[16] |
钱进, 邓喀中, 范洪冬. 基于拉普拉斯特征映射高光谱遥感影像降维及其分类[J]. 遥感信息, 2012, 27(5): 3-7.
|
[17] |
Mantziou E, Papadopoulos S, Kompatsiaris Y.Learning to detect concepts with approximate laplacian eigenmaps in large-scale and online settings[J]. International Journal of Multimedia Information Retrieval, 2015, 4(2): 95-111.
|
[18] |
Singer A, Wu H.Spectral convergence of the connection Laplacian from random samples[J]. Information and Inference: A Journal of the IMA, 2016, 6(1): 58-123.
|
[19] |
吴尚蓉, 陈仲新, 任建强, 等. 定位尺度和像元空间关系对GF-1亚像元定位精度影响分析[J]. 农业工程学报, 2016, 32(5): 163-171.
|
[20] |
王冰玉, 孙威江, 黄艳, 等. 基于遗传算法的安溪铁观音品质快速评价研究[J]. 光谱学与光谱分析, 2017, 37(4): 1100-1104.
|