[1] Liu C, Guo Y T, Sun L L, et al.Six types of tea reduce high-fat-diet-induced fat accumulation in mice by increasing lipid metabolism and suppressing inflammation[J]. Food Function, 2019, 10(4): 2061-2674. [2] Li X, Smid S D, Lin J, et al.Neuroprotective and anti-amyloid β effect and main chemical profiles of white tea: comparison against green, oolong and black tea[J]. Molecules, 2019, 24(10): 1926. doi: 10.3390/molecules24101926. [3] Kusumawardani A, Sukmasari S, Mutalib N A A, et al. Comparative study of antimicrobial potential of white tea and black tea leaf extracts from East Java-Indonesia on two species of oral streptococci[J]. Mater Today-Proc, 2019, 16: 2226-2230. [4] Wang Y C, Kan Z P, Thompson H J, et al.Impact of six typical processing methods on the chemical composition of tea leaves using a single Camellia sinensis cultivar, Longjing 43[J]. Journal of Agricultural and Food Chemistry, 2018, 67: 5423-5436. [5] Yu Z M, Yang Z Y.Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(5): 844-858. [6] Dunlop R A, Guillemin G J.The cyanotoxin and non-protein amino acid β-Methylamino-L-Alanine (L-BMAA) in the food chain: incorporation into proteins and its impact on human health[J]. Neurotox Researh, 2019, 36: 602-611. [7] 李鑫磊, 俞晓敏, 林军, 等. 基于非靶向代谢组学的白茶与绿茶、乌龙茶和红茶代谢产物特征比较研究[J]. 食品科学, 2020, 41(12): 197-203. Li X L, Yu X M, Lin J, et al.Study on the metabolites characteristic of white tea compared with green tea, oolong tea and black tea based on the non-targeted metabolomics approach[J]. Food Science, 2020, 41(12): 197-203. [8] Wang Y, Zheng P C, Liu P P, et al.Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling[J]. Food Chemistry, 2019, 272: 313-322. [9] 陈勤操. 代谢组学联合蛋白组学解析白茶的品质形成机理[D]. 武汉: 华中农业大学, 2019. Chen Q C.Study on formation mechanism of white tea characteristics based on metabolomics and proteomics analysis [D]. Wuhan: Huazhong Agricultural University, 2019. [10] Chen W, Gong L, Guo Z L, et al.A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics[J]. Molecular Plant, 2013, 6(6): 1769-1780. [11] Wisniewski J R, Zougman A, Nagaraj N, et al.Universal sample preparation method for proteome analysis[J]. Nature Methods, 2009, 6(5): 359-362. [12] 刘阳. 干旱胁迫对发菜蛋白质乙酰化修饰的影响[D]. 银川: 宁夏大学, 2018. Liu Y.Research on protein acetylation modification of Nostoc flagelliforfne in response to drought stress [D]. Yinchuan: Ningxia University, 2018. [13] 梁文裕, 杨佳, 王玲霞, 等. 发菜RNA-seq转录组分析及耐旱相关基因筛选[J]. 基因组学与应用生物学, 2017, 36(9): 3783-3794. Liang W Y, Yang J, Wang L X, et al.RNA-seqtranscriptome analysis and drought resistance related gene screening of Nostoc flagelliforme[J]. Genomics and Applied Biology, 2017, 36(9): 3783-3794. [14] 谷兆骐. 浙江省主栽茶树品种加工白茶的品质与工艺研究[D]. 杭州: 浙江大学, 2016. Gu Z Q.Research on the quality and processing of white tea in Zhejiang Province [D]. Hangzhou: Zhejiang University, 2016. [15] Dai W D, Xie D C, Lu M L, et al.Characterization of white tea metabolome: comparison against green and black tea by a nontargeted metabolomics approach[J]. Food Research International, 2017, 96: 40-45. [16] Jabeen S, Alam S, Saleem M, et al.Withering timings affect the total free amino acids and mineral contents of tea leaves during black tea manufacturing[J]. Arabian Journal of Chemistry, 2019, 12(8): 2411-2417. [17] 叶玉龙. 萎凋/摊放对茶叶在制品主要理化特性的影响[D]. 重庆: 西南大学, 2018. Ye Y L.Effects of withering on the main physical and chemical properties of manufactured tea leaves [D]. Chongqing: Southwest University, 2018. [18] Li Z, Huang T, Tang M Y, et al.iTRAQ-based proteomics reveals key role of γ-aminobutyric acid (GABA) in regulating drought tolerance in perennial creeping bentgrass (Agrostis stolonifera)[J]. Plant Physiol and Biochemistry, 2019, 145: 216-226. [19] 邓斌, 李玲, 李晓云, 等. AhHDA1异源表达影响拟南芥植株干旱性[J]. 华南师范大学学报(自然科学版), 2016, 48(5): 52-57. Deng B, Li L, Li X Y, et al.Heterologous expression of AhHDA1 affects drought resistance Arabidopsis plants[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(5): 52-57. [20] 赵利娟. 干旱胁迫对小麦生理生化和组蛋白乙酰化修饰的影响[D]. 开封: 河南大学, 2016. Zhao L J.Effect of drought stress on physiological and biochemical characteristics and histone acetylation in wheats [D]. Kaifeng: Henan University, 2016 [21] 李丽梅, 钟钰婷, 苏良辰, 等. TSA对花生响应干旱及相关基因表达的影响[J]. 植物生理学报, 2015, 51(12): 2263-2269. Li L M, Zhong Y T, Su L C, et al.Effect of TSA on responses and related genes expression of peanut under drought stress[J]. Plant Physiology Communications, 2015, 51(12): 2263-2269. [22] Du Y L, Zhao Q, Chen L R, et al.Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings[J]. Plant Physiology and Biochemistry, 2020, 146: 1-12. [23] Yue C, Cao H L, Lin H Z, et al.Expression patterns of alpha-amylase and beta-amylase genes provide insights into the molecular mechanisms underlying the responses of tea plants (Camellia sinensis) to stress and postharvest processing treatments[J]. Planta, 2019, 250: 281-298. [24] Zhou P, Zhao F, Chen M, et al.Determination of 21 free amino acids in 5 types of tea by ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) using a modified 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) method[J]. Journal of Food Composition and Analysis, 2019, 81: 46-54. [25] Zhao F, Ye N X, Qiu X H, et al.Identification and comparison of oligopeptides during withering process of White tea by ultra-high pressure liquid chromatography coupled with quadrupole-orbitrap ultra-high resolution mass spectrometry[J]. Food Research International, 2019, 121: 825-834. [26] Wei C L, Yang H, Wang S B, et al.Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): E4151-E4158. [27] 解东超, 戴伟东, 林智. 年份白茶中EPSF类成分研究进展[J]. 中国茶叶, 2019, 41(3): 7-10. Xie D C, Dai W D, Lin Z.Research progress of EPSF components in aged white tea[J]. China Tea, 2019, 41(3): 7-10. [28] 黄亚辉. 茶树种质间谷氨酸脱羧酶活性差异及γ-氨基丁酸茶的研究[D]. 长沙: 中南林业科技大学, 2010. Huang Y H.Study on the difference of the GAD activity among tea germplasms and the GABA tea [D]. Changsha: South University of Forestry and Technology, 2010. [29] 张传义. 陆地棉野生种系基于转录组与代谢组学抗旱分子机制研究[D]. 北京: 中国农业科学院, 2018. Zhang C Y.Study on the molecular mechanism of drought resistance in Gossypium hirsutum races based on transcriptomics and metabonomics [D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. |