[1] Wang L, Li X, Zhao Q, et al.Identification of genes induced in response to low-temperature treatment in tea leaves[J]. Plant Molecular Biology Reporter, 2009, 27(3): 257-265. [2] Wang Y, Jiang C J, Li Y Y, et al.CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis[J]. Plant Cell Reports, 2012, 31: 27-34. [3] Zhu X J, Li Q, Hu J, et al.Molecular cloning and characterization of spermine synthesis gene associated with cold tolerance in tea plant (Camellia sinensis)[J]. Applied Biochemistry and Biotechnology, 2015, 177(5): 1055-1068. [4] Cao H, Wang L, Yue C, et al.Isolation and expression analysis of 18 CsbZIP genes implicated in abiotic stress responses in the tea plant (Camellia sinensis)[J]. Plant Physiology and Biochemistry, 2015, 97: 432-442. [5] 房婉萍, 邹中伟, 侯喜林, 等. 茶树冷胁迫诱导H1-histone基因的克隆与序列分析[J]. 西北植物学报, 2009, 29(8): 1514-1519. [6] Wang W D, Wang Y H, Du Y L, et al.Overexpression of Camellia sinensis H1 histone gene confers abiotic stress tolerance in transgenic tobacco[J]. Plant Cell Reports, 2012, 33(11): 1829-1841. [7] Wang Y X, Liu Z W, Wu Z J, et al.Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L.) O. Kuntze][J]. PLoS One, 2016, 11(11): 1-26. [8] Yue C, Cao H, Wang L, et al.Molecular cloning and expression analysis of tea plant aquaporin (AQP) gene family[J]. Plant Physiology and Biochemistry, 2014, 83: 65-76. [9] Wang X C, Zhao Q Y, W, Ma C L, et al. Global transcriptome profiles of Camellia sinensis during cold acclimation [J]. BMC Genomics, 2013, 14(1): 415. https://doi.org/10.1186/ 1471-2164-14-415. [10] Yue C, Cao H L, Wang L, et al.Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season[J]. Plant Molecular Biology, 2015, 88(6): 591-608. [11] 黄玉婷, 钱文俊, 王玉春, 等. 茶树钙调素基因CsCaMs的克隆及其低温胁迫下的表达分析[J]. 植物遗传资源学报, 2016, 17(5): 906-913. [12] 郝心愿, 岳川, 唐湖, 等. 茶树β-淀粉酶基因CsBAM3的克隆及其响应低温的表达模式[J]. 作物学报, 2017, 43(10): 1417-1425. [13] 韩文炎, 李鑫, 颜鹏, 等. 茶园“倒春寒”防控技术[J]. 中国茶叶, 2018, 40(2): 9-12. [14] Hao X Y, Tang H, Wang B, et al.Integrative transcriptional and metabolic analyses provide insights into cold spell response mechanisms in young shoots of the tea plant[J]. Tree Physiology, 2018, 38(11): 1655-1671. [15] Hao X Y, Wang B, Wang L, et al.Comprehensive transcriptome analysis reveals common and specific genes and pathways involved in cold acclimation and cold stress in tea plant leaves[J]. Scientia Horticulturae, 2018, 240: 354-368. [16] Wei C L, Yang H, Wang S B, et al.Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proceedings of the National Academy of Sciences, 2018, 115(18): e4151-e4158. [17] 李庆会, 徐辉, 周琳, 等. 低温胁迫对2个茶树品种叶片叶绿素荧光特性的影响[J]. 植物资源与环境学报, 2015, 24(2): 26-31. [18] 林郑和, 钟秋生, 游小妹, 等. 低温对不同基因型‘白鸡冠’F1代叶绿素荧光的影响[J]. 茶叶学报, 2018, 59(2): 57-66. [19] Oquist G, Huner N P.Photosynthesis of overwintering evergreen plants[J]. Annual Review of Plant Biology, 2003, 54(1): 329-355. [20] Janmohammadi M, Zolla L, Rinalducci S.Low temperature tolerance in plants: changes at the protein level[J]. Phytochemistry, 2015, 117: 76-89. [21] Janská A, Marík P, Zelenková S, et al.Cold stress and acclimation-what is important for metabolic adjustment[J]. Plant Biology. 2010, 12(3): 395-405. [22] Oswald O, Martin T, Dominy PJ, et al.Plastid redox state and sugars: Interactive regulators of nuclear- encoded photosynthetic gene expression[J]. Proceedings of the National Academy of Sciences, 2001, 98(4): 2047-2052. [23] Ensminger I, Busch F, Huner NPA.Photostasis and cold acclimation: sensing low temperature through photosynthesis[J]. Physiologia Plantarum, 2006, 126(1): 28-44. [24] Xu J, Li Y, Sun J, et al.Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance[J]. Plant Biology, 2013, 15(2): 292-303. [25] Michael F T.Plant cold acclimation: freezing tolerance genes and regulatory mechanisms[J]. Annual Review of Plant Physiology, 1999, 50(1): 571-599. [26] Miura K, Furumoto T.Cold signaling and cold response in plants[J]. International Journal of Molecular Sciences, 2013, 14(3): 5312-5337. [27] Agarwal P, Agarwal PK.Pathogenesis related-10 proteins are small, structurally similar but with diverse role in stress signaling[J]. Molecular Biology Reports, 2014, 41(2): 599-611. [28] Seo P J, Kim M J, Park J Y, et al.Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis[J]. Plant Journal, 2010, 61(4): 661-671. [29] Xu J, Xue C, Xue D, et al. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from Soybean, decrease damage of abiotic stresses in Arabidopsis thaliana [J]. PLoS One, 2013, 8(7): e69810. https://doi.org/ 10.1371/journal.pone.0069810. [30] Niu S H, Gao Q, Li Z X, et al.The role of gibberellin in the CBF1-mediated stress-response pathway[J]. Plant Molecular Biology Reporter, 2014, 32(4): 852-863. [31] Lee H G, Seo P J.The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis[J]. Plant Journal, 2015, 82(6): 962-977. [32] Xue X X, Shao H B, Yuan Y M, et al.Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions[J]. Critical Reviews in Biotechnology, 2010, 30(3): 222-230. |