[1] Fan Z P, Gao Y H, Wang W, et al.Prevalence of brick tea-type fluorosis in the Tibet Autonomous region[J]. Journal of Epidemiology, 2016, 26(2): 57-63. [2] 沙济琴, 郑达贤. 茶树黄棪对氟的生物积累特征[J]. 福建茶叶, 1993(3): 25-28. Sha J Q, Zheng D X.The bioaccumulation characteristics of fluoride in Camellia sinensis ‘Huangdan’[J]. Tea in Fujian, 1993(3): 25-28. [3] 马立锋. 茶树对氟吸收累积特性及降氟措施研究[D]. 杭州: 浙江大学, 2004. Ma L F.Study on accumulation and distribution of fluoride in tea plants (Camellia sinensis) and its measure of reducing fluoride uptake [D]. Hangzhou: Zhejiang University, 2004. [4] Li C L, Ni D J.Effect of fluoride on the amino acid composition of tea leaves[J]. Fluoride, 2016, 49(3): 266-270. [5] Yang X, Yu Z, Zhang B, et al.Effect of fluoride on the biosynthesis of catechins in tea [Camellia sinensis (L.) O. Kuntze] leaves[J]. Scientia Horticulturae, 2015, 184: 78-84. [6] Ruan J Y, Ma L F, Shi Y Z, et al.Uptake of fluoride by tea plant (Camellia sinensis L) and the impact of aluminium[J]. Journal of the Science of Food and Agriculture, 2003, 83(13): 1342-1348. [7] Bustin S A.Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems[J]. Journal of Molecular Endocrinology, 2002, 29(1): 23-39. [8] 乔永刚, 王勇飞, 曹亚萍, 等. 药用蒲公英低温和高温胁迫下内参基因筛选与相关基因表达分析[J]. 园艺学报, 2020, 47(6): 1153-1164. Qiao Y G, Wang Y F, Cao Y P, et al.Reference genes selection and related genes expression analysis under low and high temperature stress in Taraxacum officinale[J]. Acta Horticulturae Sinica, 2020, 47(6): 1153-1164. [9] 马璐琳, 段青, 崔光芬, 等. 钝裂银莲花花色素合成相关基因qRT-PCR内参基因的筛选[J]. 园艺学报, 2021, 48(2): 377-388. Ma L L, Duan Q, Cui G F, et al.Selection and validation of reference genes for qRT-PCR analysis of the correlated genes in flower pigments biosynthesis pathway of Anemone obtusiloba[J]. Acta Horticulturae Sinica, 2021, 48(2): 377-388. [10] Nolan T, Hands R E, Bustin S A.Quantification of mRNA using real-time RT-PCR[J]. Nature Protocols, 2006, 1(3): 1559-1582. [11] Bustin S A, Benes V, Garson J A, et al.The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments[J]. Clinical Chemistry, 2009, 55(4): 611-622. [12] Wu Z J, Tian C, Jiang Q, et al.Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis)[J]. Scientific Reports, 2016, 6: 19748. doi: 10.1038/srep19748. [13] Nikalje G C, Srivastava A K, Sablok G, et al.Identification and validation of reference genes for quantitative real-time PCR under salt stress in a halophyte, Sesuvium portulacastrum[J]. Plant Gene, 2018, 13: 18-24. [14] 杨婷, 薛珍珍, 李娜, 等. 铁十字秋海棠斑叶发育过程内参基因筛选及验证[J]. 园艺学报, 2021, 48(11): 2251-2261. Yang T, Xue Z Z, Li N, et al.Reference genes selection and validation in Begonia masoniana leaves of different developmental stages[J]. Acta Horticulturae Sinica, 2021, 48(11): 2251-2261. [15] 张秋悦, 刘昌来, 于晓晶, 等. 盐胁迫条件下杜梨叶片差异表达基因qRT-PCR内参基因筛选[J]. 园艺学报, 2022, 49(7): 1557-1570. Zhang Q Y, Liu C L, Yu X J, et al.Screening of reference genes for differentially expressed genes in Pyrus betulaefolia plant under salt stress by qRT-PCR[J]. Acta Horticulturae Sinica, 2022, 49(7): 1557-1570. [16] Hao X, Horvath D P, Chao W S, et al.Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)[J]. International Journal of Molecular Sciences, 2014, 15(12): 22155-22172. [17] Wang M L, Li Q H, Xin H H, et al.Reliable reference genes for normalization of gene expression data in tea plants (Camellia sinensis) exposed to metal stresses[J]. PLoS One, 2017, 12(4): e0175863. doi: 10.1371/journal.pone.0175863. [18] Zhou Z W, Deng H L, Wu Q Y, et al.Validation of reference genes for gene expression studies in post-harvest leaves of tea plant (Camellia sinensis)[J]. Peer Journal, 2019, 7: e6385. doi: 10.7717/peerj.6385. [19] Xu W, Dong Y, Yu Y, et al.Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plants under differential biotic stresses[J]. Scientific Reports, 2020, 10(1): 2429. doi: 10.1038/s41598-020-59168-z. [20] Wang J X, Liu L L, Tang Q H, et al.Evaluation and selection of suitable qRT-PCR reference genes for light responses in tea plant (Camellia sinensis)[J]. Scientia Horticulturae, 2021, 289: 110488. doi: 10.21203/rs.3.rs-127369/v1. [21] Zhang L Y, Zhang R M, Hu X L, et al.Reference gene selection for qRT-PCR analysis in the shoots and roots of Camellia sinensis var. sinensis under nutritional stresses[J]. Scientia Horticulturae, 2023, 320: 112237. doi: 10.1016/j.scienta.2023.112237. [22] 孙美莲, 王云生, 杨冬青, 等. 茶树实时荧光定量PCR分析中内参基因的选择[J]. 植物学报, 2010, 45(5): 579-587. Sun M L, Wang Y S, Yang D Q, et al.Reference genes for real-time fluorescence quantitative PCR in Camellia sinensis[J]. Chinese Bulletin of Botany, 2010, 45(5): 579-587. [23] 郝姗. 茶树不同逆境条件下QRT-PCR适宜内参基因的筛选[D]. 南京: 南京农业大学, 2012. Hao S.Selection of appropriate reference genes for expression studies in Camellia sinensis by real-time polymerase chain reaction [D]. Nanjing: Nanjing Agricultural University, 2012. [24] 刘圆, 王丽鸳, 韦康, 等. 不同氮处理茶树实时定量PCR内参基因筛选和验证[J]. 茶叶科学, 2016, 36(1): 92-101. Liu Y, Wang L Y, Wei K, et al.Screening and validation of reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis) under different nitrogen nutrition[J]. Journal of Tea Science, 2016, 36(1): 92-101. [25] Wan Q, Xu R K, Li X H.Proton release by tea plant (Camellia sinensis L.) roots as affected by nutrient solution concentration and pH[J]. Plant Soil and Environment, 2012, 58(9): 429-434. [26] Zhu J J, Xing A Q, Wu Z C, et al.CsFEX, a fluoride export protein gene from Camellia sinensis, alleviates fluoride toxicity in transgenic Escherichia coli and Arabidopsis thaliana[J]. Journal of Agricultural and Food Chemistry, 2019, 67(21): 5997-6006. [27] 李永平, 叶新如, 王彬, 等. 黄秋葵实时荧光定量PCR内参基因的克隆与筛选评价[J]. 核农学报, 2021, 35(1): 60-71. Li Y P, Ye X R, Wang B, et al.Cloning and selection evaluation of reference gene for quantitative real-time PCR in Hibiscus esculentus L.[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(1): 60-71. [28] 侯天泽, 易双双, 张志群, 等. 秋石斛RT-qPCR内参基因的筛选与验证[J]. 园艺学报, 2022, 49(11): 2489-2501. Hou T Z, Yi S S, Zhang Z Q, et al.Selection and validation of reference genes for RT-qPCR in Phalaenopsis-type Dendrobium hybrid[J]. Acta Horticulturae Sinica, 2022, 49(11): 2489-2501. [29] Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes [J]. Genome Biology, 2002, 3(7): research0034.0031. doi: 10.1186/gb-2002-3-7-research0034. [30] Andersen C L, Jensen J L, Ørntoft T F.Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 2004, 64(15): 5245-5250. [31] Pfaffl M W, Tichopad A, Prgomet C, et al.Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations[J]. Biotechnology Letters, 2004, 26(6): 509-515. [32] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. [33] Gutierrez L, Mauriat M, Guenin S, et al.The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants[J]. Plant Biotechnology Journal, 2008, 6(6): 609-618. [34] Bustin S A, Nolan T.Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction[J]. Journal of Biomolecular Techniques, 2004, 15(3): 155-166. [35] Derveaux S, Vandesompele J, Hellemans J.How to do successful gene expression analysis using real-time PCR[J]. Methods, 2010, 50(4): 227-230. [36] 刘小飞, 于波, 黄丽丽, 等. 杜鹃红山茶实时定量PCR内参基因筛选及验证[J]. 广东农业科学, 2020, 47(12): 203-211. Liu X F, Yu B, Huang L L, et al.Screening and validation of reference genes of Camellia azalea by quantitative real-time PCR[J]. Guangdong Agricultural Sciences, 2020, 47(12): 203-211. [37] 刘瑞姣, Abdulrahman A.A.Amer, 高兴华, 等. 肌动蛋白结构与生物学功能的研究进展[J]. 中国细胞生物学学报, 2020, 42(10): 1870-1875. Liu R J, Abdulrahman A, Gao X H, et al.Advances in research on the structure and biological function of actin[J]. Chinese Journal of Cell Biology, 2020, 42(10): 1870-1875. [38] 王爽, 李海英. 植物E3泛素连接酶与非生物胁迫相关研究进展[J]. 中国农学通报, 2020, 36(29): 47-53. Wang S, Li H Y.Plant E3 ubiquitin ligase and abiotic stress: research progress[J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 47-53. |