






茶叶科学 ›› 2024, Vol. 44 ›› Issue (1): 16-26.doi: 10.13305/j.cnki.jts.2024.01.010
吴致远, 王凯博, 陈思霖, 赵碧, 申时全*
收稿日期:2023-09-12
修回日期:2023-11-29
出版日期:2024-02-25
发布日期:2024-03-13
通讯作者:
*shensq75@163.com
作者简介:吴致远,男,研究实习员,主要从事茶营养与健康研究,yuan.yaas@icloud.com。
基金资助:WU Zhiyuan, WANG Kaibo, CHEN Silin, ZHAO Bi, SHEN Shiquan*
Received:2023-09-12
Revised:2023-11-29
Online:2024-02-25
Published:2024-03-13
摘要: 茶因其明确的保健功能与健康益处备受人们青睐。随着对茶活性成分的深入研究,茶天然产物已被证实能够对多种疾病模型具有改善效果。痤疮是一种流行性高、复发率高的炎性皮肤病,除传统临床诊疗外,以敷贴、皮肤护理、膳食改善为代表的补充替代治疗也受到欢迎。目前市场上,越来越多的祛痘功效宣称产品在原料中添加茶源活性成分,以茶多酚、咖啡碱、茶氨酸、茶皂素为代表的茶叶天然产物在缓解痤疮上表现出极大的潜力。综述了茶叶不同功效成分在抑制皮脂分泌、减轻粉刺发生、改善皮肤微生物失调、减缓皮肤局灶性炎症的作用及分子机制,以期为含茶功效宣称产品的研发提供参考。
中图分类号:
吴致远, 王凯博, 陈思霖, 赵碧, 申时全. 茶天然产物缓解痤疮的作用机制研究进展[J]. 茶叶科学, 2024, 44(1): 16-26. doi: 10.13305/j.cnki.jts.2024.01.010.
WU Zhiyuan, WANG Kaibo, CHEN Silin, ZHAO Bi, SHEN Shiquan. Research Progress on the Mechanism of Natural Tea Components in Alleviating Acne[J]. Journal of Tea Science, 2024, 44(1): 16-26. doi: 10.13305/j.cnki.jts.2024.01.010.
| [1] Ahammed G J, Li X.Hormonal regulation of health-promoting compounds in tea ( [2] Rha C S, Jeong H W, Park S, et al.Antioxidative, anti-inflammatory, and anticancer effects of purified flavonol glycosides and aglycones in green tea[J]. Antioxidants, 2019, 8(8): 278. doi: 10.3390/antiox8080278. [3] Liao Z L, Zeng B H, Wang W, et al.Impact of the consumption of tea polyphenols on early atherosclerotic lesion formation and intestinal [4] Guo J, Li K, Lin Y J, et al.Protective effects and molecular mechanisms of tea polyphenols on cardiovascular diseases[J]. Frontiers in Nutrition, 2023, 10: 1202378. doi: 10.3389/fnut.2023.1202378. [5] Zhao T T, Li C, Wang S, et al.Green tea ( [6] Woo Y R, Kim H S.Truncal acne: an overview[J]. Journal of Clinical Medicine, 2022, 11(13): 3660. doi: 10.3390/jcm11133660. [7] Kim S, Park T H, Kim W I, et al.The effects of green tea on acne vulgaris: a systematic review and meta-analysis of randomized clinical trials[J]. Phytotherapy Research, 2021, 35(1): 374-383. [8] Kalaaji A N, Wahner-Roedler D L, Sood A, et al. Use of complementary and alternative medicine by patients seen at the dermatology department of a tertiary care center[J]. Complementary Therapies in Clinical Practice, 2012, 18(1): 49-53. [9] Roengritthidet K, Kamanamool N, Udompataikul M, et al. Association between diet and acne severity: a cross-sectional study in Thai adolescents and adults [J]. Acta Dermato-Venereologica, 2021, 101(12): adv00611. doi: 10.2340/actadv.v101.569. [10] Jones V A, Patel P M, Wilson C, et al.Complementary and alternative medicine treatments for common skin diseases: a systematic review and meta-analysis[J]. JAAD International, 2021, 2: 76-93. [11] Meixiong J, Ricco C, Vasavda C, et al.Diet and acne: a systematic review[J]. JAAD International, 2022, 7: 95-112. [12] Messire G, Serreau R, Berteina-Raboin S.Antioxidant effects of catechins (EGCG), andrographolide, and curcuminoids compounds for skin protection, cosmetics, and dermatological uses: an update[J]. Antioxidants, 2023, 12(7): 1317. doi: 10.3390/antiox12071317. [13] 姜秋香. 茶多酚的祛痘护肤功效及对皮肤菌群的作用研究[D]. 昆明: 云南中医药大学, 2023. Jiang Q X.Study on the effect of tea polyphenols on acne and skin care and the effect on skin flora [D]. Kunming: Yunnan University of Chinese Medicine, 2023. [14] Velasco M V R, Tano C T N, Machado-Santelli G M, et al. Effects of caffeine and siloxanetriol alginate caffeine, as anticellulite agents, on fatty tissue: histological evaluation[J]. Journal of Cosmetic Dermatology, 2008, 7(1): 23-29. [15] 大连市皮肤病医院. 茶多酚抗痤疮外用制剂: CN201010010139.6[P].2021-05-30[2023-09-12]. Dalian Dermatosis Hospital. Tea polyphenols anti-acne topical preparation: CN201010010139.6 [P].2021-05-30[2023-09-12]. [16] 株式会社爱茉莉太平洋. 茶氨酸衍生物及其制备方法和在减轻痤疮中的应用: CN201180038302.2[P].2014-12-31[2023-09-12]. Amore Pacific Corporation. Tea amino acid derivatives and their preparation methods and applications in the alleviation of acne: CN201180038302.2 [P].2014-12-31[2023-09-12]. [17] Waranuch N, Phimnuan P, Yakaew S, et al.Antiacne and antiblotch activities of a formulated combination of [18] 刘俐, 隋丽华, 韩国柱, 等. 茶多酚乳膏治疗重症痤疮的临床疗效观察[J]. 中草药, 2009, 40(9): 1448-1449. Liu L, Sui L H, Han G Z, et al.Clinical observation of the therapeutic effect of tea polyphenols cream in the treatment of severe acne[J]. Chinese Traditional and Herbal Drugs, 2009, 40(9): 1448-1449. [19] Cao K, Liu Y, Liang N N, et al.Fatty acid profiling in facial sebum and erythrocytes from adult patients with moderate acne[J]. Frontiers in Physiology, 2022, 13: 921866. doi: 10.3389/fphys.2022.921866. [20] Bhat Y J, Latief I, Hassan I.Update on etiopathogenesis and treatment of acne[J]. Indian Journal of Dermatology, Venereology and Leprology, 2017, 83(3): 298-306. [21] Wu S H, Zhang X, Wang Y, et al.Lipid metabolism reprogramming of immune cells in acne: an update[J]. Clinical, Cosmetic and Investigational Dermatology, 2023, 16: 2391-2398. [22] Agamia N F, Abdallah D M, Sorour O, et al.Skin expression of mammalian target of rapamycin and forkhead box transcription factor O1, and serum insulin-like growth factor-1 in patients with acne vulgaris and their relationship with diet[J]. The British Journal of Dermatology, 2016, 174(6): 1299-1307. [23] Cong T X, Hao D, Wen X, et al.From pathogenesis of acne vulgaris to anti-acne agents[J]. Archives of Dermatological Research, 2019, 311(5): 337-349. [24] Moseti D, Regassa A, Kim W K.Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules[J]. International Journal of Molecular Sciences, 2016, 17(1): 124. doi: 10.3390/ijms17010124. [25] Maarouf M, Platto J F, Shi V Y.The role of nutrition in inflammatory pilosebaceous disorders: Implication of the skin-gut axis[J]. Australasian Journal of Dermatology, 2019, 60(2): e90-e98. [26] Melnik B C.Linking diet to acne metabolomics, inflammation, and comedogenesis: an update[J]. Clinical, Cosmetic and Investigational Dermatology, 2015, 8: 371-388. [27] Ganceviciene R, Graziene V, Fimmel S, et al.Involvement of the corticotropin-releasing hormone system in the pathogenesis of acne vulgaris[J]. The British Journal of Dermatology, 2009, 160(2): 345-352. [28] Ganceviciene R, Graziene V, Böhm M, et al.Increased in situ expression of melanocortin-1 receptor in sebaceous glands of lesional skin of patients with acne vulgaris[J]. Experimental Dermatology, 2007, 16(7): 547-552. [29] Musial C, Kuban-Jankowska A, Gorska-Ponikowska M.Beneficial properties of green tea catechins[J]. International Journal of Molecular Sciences, 2020, 21(5): 1744. doi: 10.3390/ijms21051744. [30] 廖培羽, 施歌. 表没食子儿茶素没食子酸酯(EGCG)治疗痤疮的作用机制研究进展[J]. 中国美容医学, 2016, 25(8): 104-106. Liao P Y, Shi G.Research progress on the mechanism of epigallocatechin gallate (EGCG) in the treatments of acne[J]. Chinese Journal of Aesthetic Medicine, 2016, 25(8): 104-106. [31] Im M, Kim S Y, Sohn K C, et al.Epigallocatechin-3-gallate suppresses IGF-I-induced lipogenesis and cytokine expression in SZ95 sebocytes[J]. Journal of Investigative Dermatology, 2012, 132(12): 2700-2708. [32] Kwack M H, Ha D L, Lee W J.Preventative effects of antioxidants on changes in sebocytes, outer root sheath cells, and [33] Rothenberg D O, Zhou C, Zhang L.A review on the weight-loss effects of oxidized tea polyphenols[J]. Molecules, 2018, 23(5): 1176. doi: 10.3390/molecules23051176. [34] Pires-de-Campos M S M, Leonardi G R, Chorilli M, et al. The effect of topical caffeine on the morphology of swine hypodermis as measured by ultrasound[J]. Journal of Cosmetic Dermatology, 2008, 7(3): 232-237. [35] Herman A, Herman A P.Caffeine’s mechanisms of action and its cosmetic use[J]. Skin Pharmacology and Physiology, 2013, 26(1): 8-14. [36] Kurokawa I, Layton A M, Ogawa R.Updated treatment for acne: targeted therapy based on pathogenesis[J]. Dermatology and Therapy, 2021, 11(4): 1129-1139. [37] Xu H X, Li H Y.Acne, the skin microbiome, and antibiotic treatment[J]. American Journal of Clinical Dermatology, 2019, 20(3): 335-344. [38] Shamloul G, Khachemoune A.An updated review of the sebaceous gland and its role in health and diseases Part 2: pathophysiological clinical disorders of sebaceous glands[J]. Dermatologic Therapy, 2021, 34(2): e14862. doi: 10.1111/dth.14862. [39] Mias C, Mengeaud V, Bessou-Touya S, et al.Recent advances in understanding inflammatory acne: deciphering the relationship between [40] Xu X X, Ran X, Tang J Q, et al.Skin microbiota in non-inflammatory and inflammatory lesions of acne vulgaris: the underlying changes within the pilosebaceous unit[J]. Mycopathologia, 2021, 186(6): 863-869. [41] Dagnelie M A, Corvec S, Saint-Jean M, et al. [42] Kistowska M, Meier B, Proust T, et al.Propionibacterium acnes promotes Th17 and Th17/Th1 responses in acne patients[J]. The Journal of Investigative Dermatology, 2015, 135(1): 110-118. [43] Omer H, McDowell A, Alexeyev O A. Understanding the role of Propionibacterium acnes in acne vulgaris: the critical importance of skin sampling methodologies[J]. Clinics in Dermatology, 2017, 35(2): 118-129. [44] Kwon K C, Won J G, Kim M S, et al.Anti-acne activity of carnitine salicylate and magnolol through the regulation of exfoliation, lipogenesis, bacterial growth and inflammation[J]. Skin Research and Technology, 2023, 29(7): e13406. doi: 10.1111/srt.13406. [45] Kuehnast T, Cakar F, Weinhäupl T, et al.Comparative analyses of biofilm formation among different [46] Acet Ö, Dikici E, Acet B Ö, et al.Inhibition of bacterial adhesion by epigallocatechin gallate attached polymeric membranes[J]. Colloids and Surfaces B: Biointerfaces, 2023, 221: 113024. doi: 10.1016/j.colsurfb.2022.113024. [47] Yoon J Y, Kwon H H, Min S U, et al.Epigallocatechin-3-gallate improves acne in humans by modulating intracellular molecular targets and inhibiting [48] Xu F W, Lv Y L, Zhong Y F, et al.Beneficial effects of green tea EGCG on skin wound healing: a comprehensive review[J]. Molecules, 2021, 26(20): 6123. doi: 10.3390/molecules26206123. [49] Hengge R.Targeting bacterial biofilms by the green tea polyphenol EGCG[J]. Molecules, 2019, 24(13): 2403. doi: 10.3390/molecules24132403. [50] Shinde S, Lee L H, Chu T.Inhibition of biofilm formation by the synergistic action of EGCG-S and antibiotics[J]. Antibiotics, 2021, 10(2): 102. doi: 10.3390/antibiotics10020102. [51] Lima E M F, Winans S C, Pinto U M. Quorum sensing interference by phenolic compounds: a matter of bacterial misunderstanding[J]. Heliyon, 2023, 9(7): e17657. doi: 10.1016/j.heliyon.2023.e17657. [52] Wang Y S, Bian Z R, Wang Y.Biofilm formation and inhibition mediated by bacterial quorum sensing[J]. Applied Microbiology and Biotechnology, 2022, 106(19/20): 6365-6381. [53] Zhu J L, Huang X Z, Zhang F, et al.Inhibition of quorum sensing, biofilm, and spoilage potential in [54] Hao S Q, Yang D, Zhao L, et al.EGCG-mediated potential inhibition of biofilm development and quorum sensing in [55] Zheng T, Cui M, Chen H, et al.Co-assembled nanocomplexes comprising epigallocatechin gallate and berberine for enhanced antibacterial activity against multidrug resistant [56] Chen Y, Gao Y, Yuan M, et al.Anti- [57] Choudhary M, Verma V, Saran R, et al.Natural biosurfactant as antimicrobial agent: strategy to action against fungal and bacterial activities[J]. Cell Biochemistry and Biophysics, 2022, 80(1): 245-259. [58] Khan M I, Ahhmed A, Shin J H, et al.Green tea seed isolated saponins exerts antibacterial effects against various strains of gram positive and gram negative bacteria, a comprehensive study [59] Albalat W, Darwish H, Abd-Elaal W H, et al. The potential role of insulin-like growth factor 1 in acne vulgaris and its correlation with the clinical response before and after treatment with metformin[J]. Journal of Cosmetic Dermatology, 2022, 21(11): 6209-6214. [60] Mattii M, Lovászi M, Garzorz N, et al.Sebocytes contribute to skin inflammation by promoting the differentiation of T helper 17 cells[J]. The British Journal of Dermatology, 2018, 178(3): 722-730. [61] Mokra D, Joskova M, Mokry J.Therapeutic effects of green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis[J]. International Journal of Molecular Sciences, 2022, 24(1): 340. doi: 10.3390/ijms24010340. [62] He Y, Yang Z J, Pi J W, et al.EGCG attenuates the neurotoxicity of methylglyoxal via regulating MAPK and the downstream signaling pathways and inhibiting advanced glycation end products formation[J]. Food Chemistry, 2022, 384: 132358. doi: 10.1016/j.foodchem.2022.132358. [63] Wu Y Y, Cui J.(-)-Epigallocatechin-3-gallate provides neuroprotection via AMPK activation against traumatic brain injury in a mouse model[J]. Naunyn-Schmiedeberg’s Archives of Pharmacology, 2020, 393(11): 2209-2220. doi: 10.1007/s00210-020-01841-1. [64] Žaloudíková M.Mechanisms and effects of macrophage polarization and its specifics in pulmonary environment[J]. Physiological Research, 2023, 72(s2): S137-S156. [65] Vassiliou E, Farias-Pereira R.Impact of lipid metabolism on macrophage polarization: implications for inflammation and tumor immunity[J]. International Journal of Molecular Sciences, 2023, 24(15): 12032. doi: 10.3390/ijms241512032. [66] Ye J, Li Q H, Zhang Y S, et al.ROS scavenging and immunoregulative EGCG@Cerium complex loaded in antibacterial polyethylene glycol-chitosan hydrogel dressing for skin wound healing[J]. Acta Biomaterialia, 2023, 166: 155-166. [67] Han M G, Wang X, Wang J, et al.Ameliorative effects of epigallocatechin-3-gallate nanoparticles on 2,4-dinitrochlorobenzene induced atopic dermatitis: a potential mechanism of inflammation-related necroptosis[J]. Frontiers in Nutrition, 2022, 9: 953646. doi: 10.3389/fnut.2022.953646. [68] Xu Y H, Zhu J, Hu J Y, et al. [69] Zeng W J, Tan Z, Lai X F, et al.Topical delivery of L-theanine ameliorates TPA-induced acute skin inflammation via downregulating endothelial PECAM-1 and neutrophil infiltration and activation[J]. Chemico-Biological Interactions, 2018, 284: 69-79. [70] Liu K H, Liu E S, Lin L, et al.L-theanine mediates the p38MAPK signaling pathway to alleviate heat-induced oxidative stress and inflammation in mice[J]. Food & Function, 2022, 13(4): 2120-2130. [71] Li Z D, Geng M Y, Dou S R, et al.Caffeine decreases hepcidin expression to alleviate aberrant iron metabolism under inflammation by regulating the IL-6/STAT3 pathway[J]. Life, 2022, 12(7): 1025. doi: 10.3390/life12071025. [72] Zhou J, Bian H Y, Wu N.Protein inhibitor of activated STAT3 (PIAS3) attenuates psoriasis and associated inflammation[J]. The Journal of Dermatology, 2023, 50(10): 1262-1271. [73] Vargas-Pozada E E, Ramos-Tovar E, Rodriguez-Callejas J D, et al. Caffeine inhibits NLRP3 inflammasome activation by downregulating TLR4/MAPK/NF-κB signaling pathway in an experimental NASH model[J]. International Journal of Molecular Sciences, 2022, 23(17): 9954. doi: 10.3390/ijms23179954. [74] Alagawany M, Abd El-Hack M E, Saeed M, et al. Nutritional applications and beneficial health applications of green tea and L-theanine in some animal species: a review[J]. Journal of Animal Physiology and Animal Nutrition, 2020, 104(1): 245-256. [75] Pan L Y, Lu Y, Dai S, et al.The role of cholesterol in modifying the lipid-lowering effects of Fuzhuan brick-tea in [76] Lee Y R, Moon G H, Shim D, et al.Neuroprotective effects of fermented tea in MPTP-induced Parkinson’s disease mouse model via MAPK signaling-mediated regulation of inflammation and antioxidant activity[J]. Food Research International, 2023, 164: 112133. doi: 10.1016/j.foodres.2022.112133. |
| [1] | 汤海昆, 张兰军, 张盼盼, 刘本英. 茶叶中生物碱类化学成分及其生物活性的研究进展[J]. 茶叶科学, 2025, 45(5): 727-741. |
| [2] | 李桂楠, 杨妮, 罗微, 张佳琪, 胡志航, 熊爱生, 郝建楠, 庄静. CsDET2基因的鉴定及其对茶树光周期与非生物胁迫的响应分析[J]. 茶叶科学, 2025, 45(5): 742-756. |
| [3] | 范延艮, 萧越, 孟凡月, 刘文杰, 张颖, 孙平, 张丽霞, 任丽军. 紫芽茶树品种‘紫娟'花青素合成酶基因CsANS1的克隆与功能分析[J]. 茶叶科学, 2025, 45(5): 757-769. |
| [4] | 涂一怡, 张幼, 徐婷, 陈俊杰, 王玉春, 吕务云. 基于环介导等温扩增技术检测Colletotrichum camelliae[J]. 茶叶科学, 2025, 45(5): 770-782. |
| [5] | 江丽, 李朵姣, 胡新荣, 沈英姿, 郑寨生, 翁晓星, 刘淑婧, 边晓东, 袁名安, 陈暄. 不同栽培模式对籽叶双收茶树新梢生理生化特性的影响[J]. 茶叶科学, 2025, 45(5): 783-794. |
| [6] | 王开荣, 张龙杰, 梁月荣, 黎晓湘, 郑新强. 茶树叶色鉴别、分类研究与叶色体系构建[J]. 茶叶科学, 2025, 45(5): 795-807. |
| [7] | 李婧, 胡新龙, 唐慧珊, 郭金灵, 胡光灿, 冯德品, 仇方方, 王明乐. 基于感官评价和代谢组学的不同嫩度宜红工夫茶品质特征分析[J]. 茶叶科学, 2025, 45(5): 808-820. |
| [8] | 郭瑜, 肖刘雨, 杜秋怡, 田野, 韩宇. 青砖茶水提多糖与茶渣碱提多糖综合提取工艺优化及乳液负载体系研究[J]. 茶叶科学, 2025, 45(5): 821-840. |
| [9] | 苏林, 黄子豪, 孙丹, 陈金华, 郑亚杰, 陆英. 基于网络药理学和斑马鱼模型研究白茶中主要化合物降血糖作用[J]. 茶叶科学, 2025, 45(5): 841-851. |
| [10] | 王永慧, 王多锋, 李学敏, 史田斌, 武立栋, 刘在国, 张广忠, 赵风云. 甘肃陇南和浙江金华绿茶的理化成分及体外抗氧化差异性研究[J]. 茶叶科学, 2025, 45(5): 852-864. |
| [11] | 陈峻锐, 胡钧铭, 石元值, 韦翔华, 宋传奎, 张俊辉, 郑富海, 索广利. 炭基肥对茶园土壤团聚体有机碳物理稳定性的影响[J]. 茶叶科学, 2025, 45(5): 865-878. |
| [12] | 李兵, 朱勇, 夏程龙, 李飞龙, 蔡振洋, 吴昊. 基于改进YOLOv5s的碾茶轻量化在线分选方法[J]. 茶叶科学, 2025, 45(5): 879-897. |
| [13] | 孟超, 梁涛, 张霞, 王万红, 董煌林, 李明. 基于茶树种植和光伏发电的茶光互补模式研究[J]. 茶叶科学, 2025, 45(5): 898-908. |
| [14] | 周逸德, 陈家霖, 吴俊梅, 赵竑博, 孙彬妹, 刘少群, 郑鹏. 茶树氮代谢基因:环境胁迫适应机制与育种应用研究进展[J]. 茶叶科学, 2025, 45(4): 545-558. |
| [15] | 孙梦真, 胡志航, 杨凯欣, 张佳琪, 张楠, 熊爱生, 刘慧, 庄静. 茶树生物钟CsLUX基因的鉴定及其对光合特性的影响[J]. 茶叶科学, 2025, 45(4): 559-570. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||
浙公网安备 33019902000101号