茶叶科学 ›› 2020, Vol. 40 ›› Issue (4): 454-464.doi: 10.13305/j.cnki.jts.20200612.002
郭玲玲, 张芬, 成浩, 韦康, 阮丽, 吴立赟, 王丽鸳*
收稿日期:
2019-09-15
修回日期:
2019-12-12
出版日期:
2020-08-15
发布日期:
2020-08-18
通讯作者:
*wangly@tricaas.com
作者简介:
郭玲玲,女,硕士研究生,主要从事茶树遗传育种方面的研究。
基金资助:
GUO Lingling, ZHANG Fen, CHENG Hao, WEI Kang, RUAN Li, WU Liyun, WANG Liyuan*
Received:
2019-09-15
Revised:
2019-12-12
Online:
2020-08-15
Published:
2020-08-18
摘要: 采用RT-PCR技术,从龙井43中成功克隆了5个茶树AAPs(Amino acid permeases,氨基酸通透酶)基因。氨基酸序列比对结果表明,5个CsAAPs亚家族蛋白的序列同源性较高,为70.27%。根据氨基酸序列同源性构建系统发育树,结果显示5个CsAAPs分属3组。生物信息学分析表明,CsAAPs均含有9~10个跨膜区域和16~18个AAP保守基序。为了研究该亚家族对氮素的响应情况,选用3个茶树品种的扦插苗为试验材料,氮饥饿两周后,分别供应不同浓度的NH4NO3,然后利用qRT-PCR对CsAAPs在不同组织、氮素水平及茶树品种中的表达情况进行分析。研究发现CsAAPs在营养组织中均有表达,但是存在一定的组织表达差异,其中CsAAP3在茎中表达量最高,CsAAP8的主要表达部位为根和茎。在给氮素饥饿处理的茶苗从新供氮之后,CsAAP3的基因表达在3个氮素利用效率不同的品种间差异较大;在氮高效品种中茶302茎中表达的CsAAP3和CsAAP8,可以快速地对低氮条件做出响应,在低氮处理3 h后,基因表达水平明显增加。此研究预示着CsAAPs亚家族在茶树体内可能通过复杂的氨基酸转运参与氮代谢调控。
中图分类号:
郭玲玲, 张芬, 成浩, 韦康, 阮丽, 吴立赟, 王丽鸳. 茶树CsAAPs亚家族基因的克隆与表达分析[J]. 茶叶科学, 2020, 40(4): 454-464. doi: 10.13305/j.cnki.jts.20200612.002.
GUO Lingling, ZHANG Fen, CHENG Hao, WEI Kang, RUAN Li, WU Liyun, WANG Liyuan. Molecular Cloning and Expression Analysis of CsAAPs Gene Subfamily in Camellia Sinensis[J]. Journal of Tea Science, 2020, 40(4): 454-464. doi: 10.13305/j.cnki.jts.20200612.002.
[1] | Frink C R, Waggoner P E, Ausubel J H.Nitrogen fertilizer: retrospect and prospect[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1175-1180. |
[2] | 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003.Wan X C.Tea biochemistry [M]. 3rd ed. Beijing: China Agriculture Press, 2003. |
[3] | Araus V, Vidal E A, Puelma T, et al.Members of BTB gene family of scaffold proteins suppress nitrate uptake and nitrogen use efficiency[J]. Plant Physiology, 2016, 171(2): 1523-1532. |
[4] | Chen J G, Fan X R, Qian K Y, et al.pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants[J]. Plant Biotechnology Journal, 2017(15): 1273-1283. |
[5] | Yanagisawa S, Akiyama A, Kisaka H, et al.Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions[J]. Proceedings of the National Academy of Sciences, 2004, 101(20): 7833-7838. |
[6] | Shrawat A K, Carroll R T, Depauw M, et al.Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase[J]. Plant Biotechnology Journal, 2008, 6(7): 722-732. |
[7] | Tegeder M.Transporters for amino acids in plant cells: some functions and many unknowns[J]. Current Opinion in Plant Biology, 2012, 15(3): 315-321. |
[8] | Su Y H, Frommer W B, Ludewig U.Molecular and functional characterization of a family of amino acid transporters from Arabidopsis[J]. Plant Physiology, 2004, 136(2): 3104-3113. |
[9] | Réjane P, Guillaume P.Regulation of amino acid metabolic enzymes and transporters in plants[J]. Journal of Experimental Botany, 2014, 65(19): 5535-5556. |
[10] | Fischer W N, André B, Rentsch D, et al.Amino acid transport in plants[J]. Trends in Plant Science, 1998, 3(5): 188-195. |
[11] | Fischer W N, Loo D D, Koch W, et al.Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids[J]. Plant Journal for Cell Molecular Biology, 2002, 29(6): 717-731. |
[12] | Hunt E, Gattolin S, Newbury H J, et al.A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected[J]. Journal of Experimental Botany, 2010, 61(1): 55-64. |
[13] | Zhang L, Tan Q, Lee R, et al.Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis[J]. The Plant Cell, 2010, 22(11): 3603-3620. |
[14] | Boorer K J, Loo D D, Frommer W B, et al.Transport mechanism of the cloned potato H+/sucrose co-transporter StSUT1[J]. Journal of Biological Chemistry, 1996, 271(41): 25139-25144. |
[15] | Boorer K J, Fischer W N.Specificity and stoichiometry of the Arabidopsis H+/amino acid transporter AAP5[J]. Journal of Biological Chemistry, 1997, 272(20): 13040-13046. |
[16] | Wang T, Chen Y, Zhang M, et al.Arabidopsis amino acid permease1 contributes to salt stress-induced proline uptake from exogenous sources[J]. Frontiers in Plant Science, 2017, 8: 2182. doi: 10.3389/fpls.2017.02182. |
[17] | Tan Q, Grennan A K, Pélissier H C, et al.Characterization and expression of French bean amino acid transporter PvAAP1[J]. Plant Science, 2008, 174(3): 348-356. |
[18] | Okumoto S, Koch W M, Fischer W N, et al.Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3[J]. Journal of Experimental Botany, 2004, 55(406): 2155-2168. |
[19] | Neelam A, Marvier A C, Hall J L, et al.Functional characterization and expression analysis of the amino acid permease RcAAP3 from castor bean[J]. Plant Physiology, 1999, 120(4): 1049-1056. |
[20] | Ahmad I.New insights into plant amino acid transport and its contribution to nitrogen nutrition [D]. Umeå: Swedish University of Agricultural Sciences, 2015. |
[21] | Svennerstam H, Ganeteg U, Näsholm T.Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5[J]. The New Phytologist, 2008, 180(3): 620-630. |
[22] | Marella H H, Nielsen E, Schachtman D P, et al.The amino acid permeases AAP3 and AAP6 are involved in root-knot nematode parasitism of Arabidopsis[J]. Molecular Plant-microbe Interactions, 2013, 26(1): 44-54. |
[23] | Rentsch D, Hirner B, Schmelzer E, et al.Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant[J]. The Plant Cell, 1996, 8(8): 1437-1446. |
[24] | Ueda A, Shi W, Sanmiya K, et al.Functional analysis of salt-inducible proline transporter of barley roots[J]. Plant and Cell Physiology, 2001, 42(11): 1282-1289. |
[25] | Meyer A, Eskandari S, Grallath S, et al.AtGAT1, a high affinity transporter for gamma-aminobutyric acid in Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2006, 281(11): 7197-7204. |
[26] | Zhao H M, Ma H L, Yu L, et al.Genome-wide survey and expression analysis of amino acid transporter gene family in rice (Oryza sativa L.)[J]. PLos One, 2012, 7(11): e49210. doi: 10.1371/journal.pone.0049210. |
[27] | Persson J, Gardeström P, Näsholm T.Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris[J]. Journal of Experimental Botany, 2006, 57(11): 2651-2659. |
[28] | Dong C, Li F, Yang T, et al.Theanine transporters identified in tea plants (Camellia sinensis L.)[J]. The Plant Journal, 2020, 101(1): 57-70. |
[29] | Ruan J Y, Gerendas J, Hardter R, et al.Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants[J]. Annals of Botany, 2007, 99(2): 301-310. |
[30] | 张芬, 王丽鸳, 成浩, 等. 茶树亚硝酸还原酶基因CsNiR的克隆及表达分析[J]. 园艺学报, 2016, 43(7): 1348-1356.Zhang F, Wang L Y, Cheng H, et al.Molecular cloning and expression analysis of nitrite reductase gene CsNiR in tea plant[J]. Acta Horticulturae Sinica, 2016, 43(7): 1348-1356. |
[31] | Wei C, Yang H, Wang S, et al.Draft genome sequence of Camellia sinensis, var. sinensis, provides insights into the evolution of the tea genome and tea quality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): E4151-E4158. |
[32] | Bailey T, Elkan C.Fitting a mixture model by expectation maximization to discover motifs in biopolymers[J]. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, 1994(2): 28-36. |
[33] | Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the <inline-graphic xlink:href="1000-369X-40-4-454/img_1.wmf"/> method[J]. Methods, 2001, 25(4): 402-408. |
[34] | Breitkreuz K E, Shelp B J, Fischer W N, et al.Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana[J]. Febs Letters, 1999, 450(3): 280-284. |
[35] | 李美美. 大豆氨基酸透性酶基因GmAAP3f功能的初步研究[D]. 天津: 南开大学, 2016.Li M M.Preliminary study on the function of soybean amino acid permease gene GmAAP3f [D]. Tianjin: Nankai University, 2016. |
[36] | Okumoto S, Schmidt R, Tegeder M, et al.High affinity amino acid transporters specifically expressed in xylem parenchyma and developing seeds of Arabidopsis[J]. Journal of Biological Chemistry, 2002, 277(47): 45338-45346. |
[37] | 王新超. 不同品种茶树氮素营养差异及其机制的研究[D]. 北京: 中国农业科学院, 2003.Wang X C.Study on the genotypic difference of nitrogen nutrient and its mechanism in tea plant [Camellia sinensis (L.) O. Kuntze] [D]. Beijing: Chinese Academy of Agricultural Sciences, 2003. |
[38] | 刘圆. 不同氮效率茶树品种氮素吸收利用相关基因表达模式探究[D]. 北京: 中国农业科学院, 2016.Liu Y.The altered expression of genes related to nitrogen absorption and utilization of tea cultivars with different nitrogen use efficiency [D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. |
[1] | 王留彬, 黄丽蕴, 滕翠琴, 吴立赟, 成浩, 于翠平, 王丽鸳. 梧州茶树种质资源的遗传多样性及亲缘关系分析[J]. 茶叶科学, 2022, 42(5): 601-609. |
[2] | 周汉琛, 杨霁虹, 徐玉婕, 吴琼, 雷攀登. 香叶醇生物合成相关基因NUDX1的进化分析[J]. 茶叶科学, 2022, 42(5): 638-648. |
[3] | 陈琪予, 马建强, 陈杰丹, 陈亮. 利用图像特征分析茶树成熟叶表型的遗传多样性[J]. 茶叶科学, 2022, 42(5): 649-660. |
[4] | 孙悦, 吴俊, 韦朝领, 刘梦月, 高晨曦, 张灵枝, 曹士先, 余顺甜, 金珊, 孙威江. 抗小贯松村叶蝉和茶棍蓟马的茶树种质筛选及其抗性相关因素分析[J]. 茶叶科学, 2022, 42(5): 689-704. |
[5] | 王玉源, 刘任坚, 刘少群, 舒灿伟, 孙彬妹, 郑鹏. 茶树R2R3-MYB转录因子CsTT2表达分析及功能初步鉴定[J]. 茶叶科学, 2022, 42(4): 463-476. |
[6] | 刘建军, 张金玉, 彭叶, 刘晓博, 杨云, 黄涛, 温贝贝, 李美凤. 不同光质摊青对夏秋茶树鲜叶挥发性物质及其绿茶品质影响研究[J]. 茶叶科学, 2022, 42(4): 500-514. |
[7] | 邢安琪, 武子辰, 徐晓寒, 孙怡, 王艮梅, 王玉花. 茶树富集氟的特点及其机制的研究进展[J]. 茶叶科学, 2022, 42(3): 301-315. |
[8] | 王涛, 王艺清, 漆思雨, 周喆, 陈志丹, 孙威江. 茶树CLH基因家族的鉴定与转录调控研究及其在白化茶树中的表达分析[J]. 茶叶科学, 2022, 42(3): 331-346. |
[9] | 刘任坚, 王玉源, 刘少群, 舒灿伟, 孙彬妹, 郑鹏. 茶树CsbHLH024和CsbHLH133转录因子功能鉴定[J]. 茶叶科学, 2022, 42(3): 347-357. |
[10] | 欧阳珂, 张成, 廖雪利, 坤吉瑞, 童华荣. 基于感官组学分析玉米香型南川大茶树工夫红茶特征香气[J]. 茶叶科学, 2022, 42(3): 397-408. |
[11] | 刘富浩, 范延艮, 王域, 孟凡月, 张丽霞. 茶树黄金芽CsHIPP26.1蛋白螯合离子的筛选与鉴定[J]. 茶叶科学, 2022, 42(2): 179-186. |
[12] | 杨妮, 李逸民, 李静文, 滕瑞敏, 陈益, 王雅慧, 庄静. 外源5-ALA对干旱胁迫下茶树叶绿素合成和荧光特性及关键酶基因表达的影响[J]. 茶叶科学, 2022, 42(2): 187-199. |
[13] | 疏再发, 郑生宏, 邵静娜, 周慧娟, 吉庆勇, 刘瑜, 何卫中, 王丽鸳. 不同茶树品种(系)对减半施肥的响应研究[J]. 茶叶科学, 2022, 42(2): 277-289. |
[14] | 陈潇敏, 赵峰, 王淑燕, 邵淑贤, 吴文晞, 林钦, 王鹏杰, 叶乃兴. 福建野生茶树资源嘌呤生物碱构成评价及特异资源筛选[J]. 茶叶科学, 2022, 42(1): 18-28. |
[15] | 刘庆帅, 璩馥榕, 魏梦园, 钟红, 王熠, 陈亮, 金基强. 基于UPLC技术解析金萱×紫娟F1分离群体代谢物的遗传变异[J]. 茶叶科学, 2022, 42(1): 29-40. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|