[1] Sharma P, Kumar S.Differential display-mediated identification of three drought-responsive expressed sequence tags in tea [Camellia sinensis L. (O.) Kuntze)][J]. Journal of Biosciences, 2005, 30: 101-105. [2] 陈盛相, 齐桂年, 夏建冰, 等. 茶树在干旱条件下的mRNA差异表达[J]. 茶叶科学, 2012, 32(1): 53-58. [3] 朱全武, 范凯, 谢艳兰, 等. 植物低温胁迫响应miRNAs及其在茶树抗寒研究中的应用[J]. 茶叶科学, 2013, 33(3): 212-220. [4] Cao F Y, Yoshioka K, Desveaux D.The roles of ABA in plant-pathogen interactions[J]. Journal of Plant Research, 2011, 124(4): 489-499. [5] Wang Y L, Ma F W, Li M J, et al. Physiological responses of kiwifruit plants to exogenous ABA under drought conditions[J]. Plant Growth Regulation, 2011, 64(1): 63-74. [6] Lee S C, Luan S.ABA signal transduction at the crossroad of biotic and abiotic stress responses[J]. Plant Cell and Environment, 2012, 35(1): 53-60. [7] 张丽, 周欣, 蒋家月, 等. 外源ABA对茶树抗寒生理指标的影响[J]. 茶叶通报, 2012, 34(2): 72-74. [8] Xing D K, Wu Y Y.Photosynthetic response of three climber plant species to osmotic stress induced by polyethylene glycol (PEG) 6000[J]. Acta Physiologiae Plantarum, 2012, 34: 1659-1668. [9] Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical biochemistry, 1976, 72: 248-254. [10] Yemm E W, Willis A J.The estimation of carbohydrates in plant extracts by anthrone[J]. Biochemical Journal, 1954, 57: 508-514. [11] 王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 2008: 134-135, 190-191, 278-279. [12] Dhindsa R, Plumb-Dhindsa P, Thorpe T.Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J]. Journal of Experimental Botany, 1981, 32: 93. [13] Giannopolitis C N, Ries S K.Superoxide dismutase. I.Occurrence in higher plants[J]. Plant Physiology, 1977, 59: 309-314. [14] Aebi H.Catalase in vitro[J]. Methods in Enzymology, 1984, 105: 121-126. [15] Chen Q, Yang L M, Ahmad P, et al. Proteomic profiling and redox status alteration of recalcitrant tea (Camellia sinensis) seed in response to desiccation[J]. Planta, 2011, 233: 583-592. [16] Hoekstra F A, Golovina E A, Buitink J.Mechanisms of plant desiccation tolerance[J]. Trends in plant science, 2001, 6(9): 431-438. [17] 梁新华, 史大刚. 干旱胁迫对光果甘草幼苗根系MDA含量及保护酶POD、CAT活性的影响[J]. 干旱地区农业研究, 2006, 24(3): 108-110. [18] Li D X, Li C D, Sun H C, et al. Effects of drought on soluble protein content and protective enzyme system in cotton leaves[J]. Frontiers of Agriculture in China, 2010, 4(1): 56-62. [19] Sghaier B, Kriaa W, Bahlul M, et al. Effect of ABA, arginine and sucrose on protein content of date palm somatic embryos[J]. Scientia Horticulturae, 2009, 120(3): 379-385. [20] 刘玉英, 徐泽, 罗云米. 干旱胁迫对不同茶树品种生理特性的影响[J]. 西南农业学报, 2010, 23(2): 387-389. [21] Szabados L, Savoure A.Proline: a multifunctional amino acid[J]. Trends in Plant Science, 2010, 15(2): 89-97. [22] 杨华, 唐茜, 黄毅, 等. 名山白毫对干旱胁迫的生理生态响应[J]. 西南农业学报, 2010, 23(5): 1497-1503. [23] Kavi Kishor1 P B, Sangam1 S, Amrutha R N, et al. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance[J]. Current Science, 2005, 88(3): 424-438. [24] Gechev T S, Hille J.Molecular basis of plant stress[J]. Cellular and Molecular Life Sciences, 2012, 69: 3161-3163. [25] Yao G H, Gao P P, Wang Y P, et al. Abscisic acid improves chilling-induced oxidative stress in Trichosanthes kirilowii Maxim seedlings[J]. Journal of Agricultural Science and Technology, 2013, 15(3): 583-592. [26] Guo L W, Chen R G, Gong Z H, et al. Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress[J]. Genetics and Molecular Research, 2012, 11(4): 4063-4080. |