Journal of Tea Science ›› 2023, Vol. 43 ›› Issue (6): 823-834.doi: 10.13305/j.cnki.jts.2023.06.007
• Research Paper • Previous Articles Next Articles
LI Yanchun1, WANG Yixiang1, YE Jing1, LI Zhaowei2
Received:
2023-07-20
Revised:
2023-09-14
Online:
2023-12-15
Published:
2024-01-08
CLC Number:
LI Yanchun, WANG Yixiang, YE Jing, LI Zhaowei. Changes of Rhizospheric Pathogen Alternaria sp. and Its Antagonistic Bacteria Pseudomonas sp. of Continuous Cropping Tea Plants Mediated by Phenolic Acids[J]. Journal of Tea Science, 2023, 43(6): 823-834.
[1] | 罗倩, 张珍明, 向准, 等. 不同种植年限鸟王茶产地土壤物理性质及生长特征[J]. 西南农业学报, 2017, 30(12): 2746-2750.Luo Q, Zhang Z M, Xiang Z, et al.Soil physical properties of Niaowang tea growing area with different cultivation years and growth characteristics of Niaowang tea[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(12): 2746-2750. |
[2] | 李艳春. 不同宿根年限铁观音茶园酸化土壤微生物群落特征及改良措施研究[D]. 福州: 福建农林大学, 2017.Li Y C.Microbial community characteristics of acidified Tieguanyin tea soils with different ratooning ages and improvement measures [D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. |
[3] | Han W Y, Kemmitt S J, Brookes P C.Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity[J]. Soil Biology Biochemistry, 2007, 39(7): 1468-1478. |
[4] | Li Y C, Li Z W, Arafat Y, et al.Studies on fungal communities and functional guilds shift in tea continuous cropping soils by high-throughput sequencing[J]. Annals of Microbiology, 2020, 70(1): 2762-2770. |
[5] | 孙秀山, 封海胜, 万书波, 等. 连作花生田主要微生物类群与土壤酶活性变化及其交互作用[J]. 作物学报, 2001, 27(5): 617-621.Sun X S, Feng H S, Wang S B, et al.Changes of main microbial strains and enzymes activities in peanut continuous cropping soil and their interactions[J]. Acta Agronomica Sinica, 2001, 27(5): 617-621. |
[6] | 胡元森, 刘亚峰, 吴坤, 等. 黄瓜连作土壤微生物区系变化研究[J]. 土壤通报, 2006, 37(1): 126-129.Hu Y S, Liu Y F, Wu K, et al.Variation of microbial community structure in relation to successive cucumber cropping soil[J]. Chinese Journal of Soil Science, 2006, 37(1): 126-129. |
[7] | 周宝利, 徐妍, 尹玉玲, 等. 不同连作年限土壤对茄子土壤生物学活性的影响及其嫁接调节[J]. 生态学杂志, 2010, 29(2): 290-294.Zhou B L, Xu Y, Yin Y L, et al.Effects of different years continuous cropping and grafting on the biological activities of eggplant soil[J]. Chinese Journal of Ecology, 2010, 29(2): 290-294. |
[8] | Li A Y, Wei Y, Sun Z J, et al.Analysis of bacterial and fungal community structure in replant strawberry rhizosphere soil with denaturing gradient gel electrophoresis[J]. African Journal of Biotechnology, 2012, 11(49): 10962-10969. |
[9] | 林生, 庄家强, 陈婷, 等. 不同年限茶树根际土壤微生物群落PLFA生物标记多样性分析[J]. 生态学杂志, 2013, 32(1): 64-71.Lin S, Zhuang J Q, Chen T, et al.Microbial diversity in rhizosphere soils of different planting year tea trees: an analysis with phospholipid fatty acid biomarkers[J]. Chinese Journal of Ecology, 2013, 32(1): 64-71. |
[10] | Li Y C, Li Z, Li Z W, et al.Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach[J]. Journal of Applied Microbiology, 2016, 121(3): 787-799. |
[11] | 林文雄, 陈婷, 周明明. 农业生态学的新视野[J]. 中国生态农业学报, 2012, 20(3): 253-264.Lin W X, Chen T, Zhou M M.New dimensions in agroecology[J]. Chinese Journal of Eco-Agriculture, 2012, 20(3): 253-264. |
[12] | Li X G, Ding C F, Hua K, et al.Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy[J]. Soil Biology & Biochemistry, 2014, 78: 149-159. |
[13] | Ye S F, Zhou Y H, Sun Y, et al.Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt[J]. Environmental and Experimental Botany, 2006, 56(3): 255-262. |
[14] | 沈怡斐, 鄂垚瑶, 阳芳, 等. 西瓜根系分泌物中氨基酸组分对多黏类芽孢杆菌SQR-21趋化性及根际定殖的影响[J]. 南京农业大学学报, 2017, 40(1): 101-108.Shen Y F, E Y Y, Yang F, et al. Effects of amino acids in root exudates of watermelon on the chemotactic reaction and root colonization of Paenibacillus polymyxa SQR-21[J]. Journal of Nanjing Agricultural University, 2017, 40(1): 101-108. |
[15] | 张淑香, 高子勤. 连作障碍与根际微生态研究Ⅱ. 根系分泌物与酚酸物质[J]. 应用生态学报, 2000, 11(1): 152-156.Zhang S X, Gao Z Q.Continuous cropping obstacle and rhizospheric microecology Ⅱ. Root exudates and phenolic acids[J]. Chinese Journal of Applied Ecology, 2000, 11(1): 152-156. |
[16] | 胡元森, 吴坤, 李翠香, 等. 酚酸物质对黄瓜幼苗及枯萎病菌茵丝生长的影响[J]. 生态学杂志, 2007, 26(11): 1738-1742.Hu Y S, Wu K, Li C X, et al.Effects of phenolic compounds on the growth of Cucumis sativus seedlings and Fusarium oxysporum hypha[J]. Chinese Journal of Ecology, 2007, 26(11): 1738-1742. |
[17] | Zhou X G, Wu F Z.p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f.sp. cucumerinum Owen[J]. Plos One, 2012, 7(10): e48288. doi: 10.1371/journal.pone.0048288. |
[18] | Tian G L, Bi Y M, Cheng J D, et al.High concentration of ferulic acid in rhizosphere soil accounts for the occurrence of Fusarium wilt during the seedling stages of strawberry plants[J]. Physiological and Molecular Plant Pathology, 2019, 108: 101435. doi: 10.1016/j.pmpp.2019.101435. |
[19] | 张淑香, 高子勤, 刘海玲. 连作障碍与根际微生态研究Ⅲ. 土壤酚酸物质及其生物学效应[J]. 应用生态学报, 2000, 11(5): 741-744.Zhang S X, Gao Z Q, Liu H L.Continuous cropping obstacle and rhizospheric microecology Ⅲ. Soil phenolic acids and their biological effect[J]. Chinese Journal of Applied Ecology, 2000, 11(5): 741-744. |
[20] | 孙海兵, 毛志泉, 朱树华. 环渤海湾地区连作苹果园土壤中酚酸类物质变化[J]. 生态学报, 2011, 31(1): 90-97.Sun H B, Mao Z Q, Zhu S H.Changes of phenolic acids in the soil of replanted apple orchards surrounding Bohai Gulf[J]. Acta Ecologica Sinica, 2011, 31(1): 90-97. |
[21] | 李贺勤, 刘奇志, 张林林, 等. 草莓连作土壤酚酸类物质积累对土壤线虫的影响[J]. 生态学杂志, 2014, 33(1): 169-175.Li H Q, Liu Q Z, Zhang L L, et al.Accumulation of phenolic acids in the monocultured strawberry soils and their effect on soil nematodes[J]. Chinese Journal of Ecology, 2014, 33(1): 169-175. |
[22] | Chen S L, Zhou B L, Lin S S, et al.Accumulaion of cinnamic acid and vanillin in eggplant root exudates and the relationship with continuous cropping obstacle[J]. African Journal of Biotechnology, 2011, 10(14): 2659-2665. |
[23] | Kaur H, Kaur R, Kaur S, et al.Taking ecological function seriously: soil microbial communities can obviate allelopathic effects of released metabolites[J]. Plos One, 2009, 4(3): e4700. doi: 10.1371/journal.pone.0004700. |
[24] | Eisenhauer N, Scheu S, Jousset A.Bacterial diversity stabilizes community productivity[J]. Plos One, 2012, 7(3): e34517. doi: 10.1371/journal.pone.0034517. |
[25] | Lin R Y, Wang H B, Guo X K, et al.Impact of applied phenolic acids on the microbes, enzymes and available nutrients in paddy soils[J]. Allelopathy Journal, 2011, 28(2): 225-236. |
[26] | Zhou X, Yu G, Wu F.Soil phenolics in a continuously mono-cropped cucumber (Cucumis sativus L.) system and their effects on cucumber seedling growth and soil microbial communities[J]. European Journal of Soil Science, 2012, 63(3): 332-340. |
[27] | 罗文富, 喻盛甫, 贺承福, 等. 三七根腐病病原及复合侵染的研究[J]. 植物病理学报, 1997, 27(1): 85-91.Luo W F, Yu S F, He C F, et al.On the combined infection of root rot pathogens on Panax notoginseng[J]. Acta Phytopathologica Sinica, 1997, 27(1): 85-91. |
[28] | 孙炳剑, 袁红霞, 邢小萍, 等. 郑州地区冷季型草坪草根腐病病原鉴定[J]. 草原与草坪, 2007(6): 51-54.Sun B J, Yuan H X, Xing X P, et al.Identification of turfgrass root rot disease in Zhengzhou[J]. Grassland and Turf, 2007(6): 51-54. |
[29] | 田给林, 毕艳孟, 孙振钧, 等. 酚酸类物质在作物连作障碍中的化感效应及其调控研究进展[J]. 中国科技论文, 2016, 11(6): 699-705.Tian G L, Bi Y M, Sun Z J, et al.Progression allelopathic effect and regulation of phenolic acids for continuous cropping obstacle system[J]. China Sciencepaper, 2016, 11(6): 699-705. |
[30] | Hao W Y, Ren L X, Ran W, et al.Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f. sp. niveum[J]. Plant and Soil, 2010, 336(1): 485-497. |
[31] | 杨瑞秀, 高增贵, 姚远, 等. 甜瓜根系分泌物中酚酸物质对尖孢镰孢菌的化感效应[J]. 应用生态学报, 2014, 25(8): 2355-2360.Yang R X, Gao Z G, Yao Y, et al.Allelopathic effects of phenolic compounds of melon root exudates on Fusarium oxysporum f.sp. melonis[J]. Chinese Journal of Applied Ecology, 2014, 25(8): 2355-2360. |
[32] | Wu H M, Wu L K, Wang J Y, et al.Mixed phenolic acids mediated proliferation of pathogens Talaromyces helicus and Kosakonia sacchari in continuously monocultured Radix pseudostellariae rhizosphere soil[J]. Frontiers in Microbiology, 2016, 7: 335. doi: 10.3389/fmicb.2016.00335. |
[1] | WANG Liubin, WU Liyun, WEI Kang, WANG Liyuan. QTL Mapping and Candidate Gene Analysis for Timing of Spring Bud Flush in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2023, 43(6): 747-756. |
[2] | LIU Dongna, GONG Xuejiao, LI Lanying, HUANG Fan, YAO Yu, XU Yaqiong, GAO Yuan, LUO Fan. Analysis of Photosynthetic and Fluorescence Characteristics of Albino Tea Plants [J]. Journal of Tea Science, 2023, 43(6): 757-768. |
[3] | YANG Jun, ZHANG Lilan, ZHANG Wenjing, CHEN Linhai, ZHENG Guohua, LI Yijing, WANG Rangjian. Population Structure and Genetic Differences of Tea Germplasm Resources in Fujian [J]. Journal of Tea Science, 2023, 43(6): 769-783. |
[4] | YANG Jihong, ZHOU Hanchen, XU Yujie. Catalytic Function, Promoter Structure and Functional Analysis of CsNUDX1-cyto in Different Tea Cultivars [J]. Journal of Tea Science, 2023, 43(5): 621-630. |
[5] | LIU Hongxia, LIU Yingying, CHEN Hongping, CHAI Yunfeng. Glyphosate-stress Effects on Shikimic Acid in Tea Leaves [J]. Journal of Tea Science, 2023, 43(5): 657-666. |
[6] | TANG Ziyi, DU Yue, YANG Hongbin, LI Xinghui, YU Youben, WANG Weidong. Changes of Endogenous Hormone Contents and Expression Analysis of Related Genes in Leaves of Tea Plants Under Heat and Drought Stresses [J]. Journal of Tea Science, 2023, 43(4): 489-500. |
[7] | HAN Haidong, ZHOU Liuting, HUANG Xiaoyun, YU Chengran, HUANG Xiusheng. The Characteristics of Fungal Community Structure in Tea Rhizosphere Soil Interplanted with Ganoderma lucidum Based on High-throughput Sequencing Technology [J]. Journal of Tea Science, 2023, 43(4): 513-524. |
[8] | SUN Yue, LIU Mengyue, GAO Chenxi, WU Quanjin, CAO Shixian, YU Shuntian, CHEN Zhidan, JIN Shan, SUN Weijiang. Study on the Differences of Leaf Color and Volatiles of Different Insect-resistance Tea Cultivars [J]. Journal of Tea Science, 2023, 43(4): 525-543. |
[9] | LI Jiasi, LIU Yingqing, ZHANG Yongheng, ZHANG Ying'ao, XIAO Yezi, LIU Lu, YU Youben. Identification of Transcription Factors Interacting with CsNCED2 Promoter and Their Response to Abiotic Stress [J]. Journal of Tea Science, 2023, 43(3): 325-334. |
[10] | SHEN Ruihan, MA Lifeng, YANG Xiangde, FANG Li. Effects of Nitrogen Form and Weak Light Stress on Tea Plant Growth and Metabolism [J]. Journal of Tea Science, 2023, 43(3): 349-355. |
[11] | GUO Lina, HAO Xinyuan, WANG Lu, QI Meng, LI Xiaoman, REN Hengze, ZHENG Qinghua, WANG Xinchao, ZENG Jianming. Study on the Characteristics of CsPHT1;3 and Its Response to Selenium in Tea Plants [J]. Journal of Tea Science, 2023, 43(2): 173-182. |
[12] | LI Hongli, ZHOU Tiefeng, MAO Yuxiao, HUANG Haitao, CUI Hongchun, ZHENG Xuxia, ZHAO Yun. Isolation and Identification of Anthracnose Pathogen from Xihu Longjing Plantation and Screening of Its Plant-derived Fungicides [J]. Journal of Tea Science, 2023, 43(2): 194-204. |
[13] | ZHENG Shizhong, ZHOU Ziwei, CHEN Xiaohui, CAI Liewei, JIANG Shengtao, LIU Shengrong. Screening, Identification and Culture Condition Optimization of Antagonistic Endophytic Bacteria Against Gloeosporium theae-sinensis Miyake [J]. Journal of Tea Science, 2023, 43(2): 205-215. |
[14] | LIU Haoran, ZHANG Chenyu, GONG Yang, YE Yuanyuan, CHEN Jiedan, CHEN Liang, LIU Dingding, MA Chunlei. Development and Application of Albinotea Plant mSNP Molecular Markers Based on Genome-wide Resequencing [J]. Journal of Tea Science, 2023, 43(1): 27-39. |
[15] | YAN Jiawei, CHEN Zongmao, LI Zhaoqun, LUO Zongxiu, BIAN Lei, CAI Xiaoming, JIN Shan. Identification of Watery Saliva Protein from Empoasca onukii and Preliminary Study on the Involvement in the Formation of “Hopperburn” Symptoms in Tea Plants [J]. Journal of Tea Science, 2023, 43(1): 40-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|