Journal of Tea Science ›› 2018, Vol. 38 ›› Issue (2): 133-139.doi: 10.13305/j.cnki.jts.2018.02.003
Previous Articles Next Articles
RAN Wei1,2, ZHANG Jin1,2, ZHANG Xin1,2, LIN Songbo1,2, SUN Xiaoling1,2,*
Received:
2017-12-18
Revised:
2018-01-16
Online:
2018-04-15
Published:
2019-08-28
CLC Number:
RAN Wei, ZHANG Jin, ZHANG Xin, LIN Songbo, SUN Xiaoling. Infestation of Ectropis obliqua Affects the Catechin Metabolism in Tea Plants[J]. Journal of Tea Science, 2018, 38(2): 133-139.
[1] | 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003. |
[2] | Jiang X, Feng K, Yang X.In vitro antifungal activity and mechanism of action of tea polyphenols and tea saponin against Rhizopus stolonifera[J]. J Mol Microbiol Biotechnol, 2015, 35(7): 269-276. |
[3] | Mikulic-Petkovsek M, Schmitzer V, Jakopic J, et al.Phenolic compounds as defence response of pepper fruits to Colletotrichum coccodes [J]. Physiol Mol Plant Pathol, 2013, 84(1): 138-145. |
[4] | Yi S M, Zhu J L, Fu L L, et al.Tea polyphenols inhibit Pseudomonas aeruginosa through damage to the cell membrane[J]. Int J Food Microbiol, 2010, 144(1): 111-117. |
[5] | Aditi S, Kanwar S S, Sud R G, et al.Influence of phenolic compounds of Kangra tea [Camellia sinensis(L) O Kuntze] on bacterial pathogens and indigenous bacterial probiotics of Western Himalayas[J]. Braz J Microbiol. 2013, 44(3): 709-715. |
[6] | Wang Y C, Qian W J, Li N N, et al.Metabolic changes of caffeine in tea pant (Camellia sinensis (L.) O. Kuntze) as defense response to colletotrichum fructicola[J]. Journal of Agricultural & Food Chemistry, 2016, 64(35): 6685-6693. |
[7] | Siranidou E, Kang Z, Buchenauer H.Studies on symptom development, phenolic compounds and morphological defense responses in wheat cultivars differing in resistance to fusarium, head bight[J]. Journal of Phytopathology, 2002, 150(5): 200-208. |
[8] | Czerniewicz P, Sytykiewicz H, Durak R, et al.Role of phenolic compounds during antioxidative responses of winter triticale to aphid and beetle attack[J]. Plant Physiology & Biochemistry Ppb, 2017(118): 529-540. |
[9] | 郑高云. 不同茶树品种对茶尺蠖抗性机制的研究[D]. 合肥: 安徽农业大学, 2008. |
[10] | 金珊. 不同茶树品种抗假眼小绿叶蝉机理研究[D]. 杨凌: 西北农林科技大学, 2012. |
[11] | 高香凤, 李慧玲, 王庆森. 茶树叶片组织结构及次生物质与抗虫性关系研究进展[J]. 茶叶科学技术, 2011(2): 7-11. |
[12] | Mohanpuria P, Kumar V, Yadav S K.Tea caffeine: Metabolism, functions, and reduction strategies[J]. Food Science & Biotechnology, 2010, 19(2): 275-287. |
[13] | Xin Z, Zhang Z, Chen Z, et al.Salicylhydroxamic acid (SHAM) negatively mediates tea herbivore-induced direct and indrect defense against the tea geometrid Ectropis obliqua[J]. J Plant Res, 2014, 127(4): 565-572. |
[14] | Fragoso V, Rothe E, Baldwin I T, et al.Root jasmonic acid synthesis and perception regulate folivore-induced shoot metabolites and increase Nicotiana attenuata resistance[J]. New Phytologist, 2014, 202(4): 1335-1345. |
[15] | Sun X L, Wang G C, Gao Y, et al.Volatiles emitted from tea plants infested by Ectropis obliqua larvae are attractive to conspecifc moths[J]. Journal of Chemical Ecology, 2014, 40(10): 1080-1089. |
[16] | 孙晓玲, 高宇, 陈宗懋. 虫害诱导植物挥发物(HIPVs)对植食性昆虫的行为调控[J]. 应用昆虫学报, 2012, 49(6): 1413-1422. |
[17] | 雷舒, 李喜旺, 孙晓玲, 等. 茶尺蠖为害提高临近茶苗对茶尺蠖幼虫的防御能力[J]. 茶叶科学, 2016, 36(6): 587-593. |
[18] | 张琪, 徐维玲, 李翠芹. HPLC法同时测定茶叶中儿茶素类和咖啡因的含量[J]. 食品工业科技, 2015, 36(4): 53-56. |
[19] | Kessler A, Baldwin IT.Plant responses to insect herbivory: the emerging molecular hypothesis[J]. Annu Rev Plant Biol, 2002, 53(1): 299-328. DOI: 10.1146/annurev.arplant. 53.100301.135207. |
[20] | War AR, Paulraj MG, Hussain B, et al.Effect of plant secondary metabolites on legume pod borer, helicoverpa armigera[J]. Journal of Pest Science, 2013, 86(3): 399-408. |
[21] | Scogings P F, Hjältén J, Skarpe C, et al.Nutrient and secondary metabolite concentrations in a savanna are independently affected by large herbivores and shoot growth rate[J]. Plant Ecology, 2014, 215(1): 73-82. |
[22] | Lattanzio V, Lattanzio V M T, Cardinali A. Role of polyphenols in the resistance mechanisms of plants against fungal pathogens and insects[M]. Imperato, F. Phytochemistry: Advances in research, Research Signpost. Trivandrum, Kerala, India, 2006: 23-67. |
[23] | Wójcicka A.Cereal phenolic compounds as biopesticides of cereal aphids[J]. Polish Journal of Environmental Studies, 2010, 19(6): 1337-1343. |
[24] | 刘泽辉, 赵国虎, 陆敬善, 等. 棉花棉酚含量与抗虫特性的研究[J]. 新疆农业科学, 2008, 45(3): 409-413. |
[25] | Punyasiri P A, Abeysinghe I S, Kumar V, et al.Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways[J]. Archives of Biochemistry & Biophysics, 2004, 431(1): 22-30. |
[26] | Felton G, Donato K, Broadway R, et al.Impact of oxidized plant phenolics on the nutritional quality of dietar protein to a noctuid herbivore, Spodoptera exigua[J]. Journal of Insect Physiology, 1992, 38(4): 277-285 |
[27] | Wang J, Constabel C P.Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria)[J]. Planta, 2004, 220(1): 87-96. |
[28] | Bhonwong A, Stout MJ, Attajarusit J, et al.Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua)[J]. Journal of Chemical Ecology, 2009, 35(1): 28-38. |
[29] | Vanitha S C, Umesha S.Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato[J]. Journal of Phytopathology, 2010, 157(9): 552-557. |
[30] | Bosch M, Berger S, Schaller A, et al.Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sexta[J]. Bmc Plant Biology, 2014, 14(1): 257-272. |
[31] | 朱香镇, 麻巧迎, 张帅, 等. 棉花多酚氧化酶基因GhPPO1的克隆及在棉铃虫取食诱导反应中的作用[J]. 中国农业科学, 2014, 47(16): 3174-3183. |
[32] | Mishra BB, Gautam S.Polyphenol oxidases: biochemical and molecular characterization, distribution, role and its control[J]. Enz Eng, 2016, 5: 141. Doi:10.4172/2329-6674.1000141. |
[33] | Liang X, Chen Q, Lu H, et al.Increased activities of peroxidase and polyphenol oxidase enhance cassava resistance to Tetranychus urticae[J]. Experimental and Applied Acarology, 2017, 71(3), 195-209. |
[34] | Yang ZW, DUAN XN, Jin S, et al.Regurgitant derived from the tea geometrid ectropis obliqua suppresses, wound-induced polyphenol oxidases activity in tea plants[J]. Journal of Chemical Ecology, 2013, 39(6): 744-751. |
[1] | GUO Yongchun, WANG Pengjie, CHEN Di, ZHENG Yucheng, CHEN Xuejin, YE Naixing. Genome-wide Identification and Expression Analysis of SRO Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2019, 39(04): 392-402. |
[2] | FANG Hongfeng, ZHANG Huixia, WANG Guohong, YANG Minhe. Fungal Mixed Fermentation for The Production of Lipase and Its Activity Analysis in Galloylated Catechin Hydrolysis [J]. Journal of Tea Science, 2019, 39(01): 88-97. |
[3] | ZHENG Shizhong, JIANG Shengtao, LIU Wei, CHEN Meixia, LIN Yuling, LAI Zhongxiong, LIN Jinke. Cloning and Functional Analysis of the CsMYB Promoter In Tea Plant (Camellia sinensis L.) [J]. Journal of Tea Science, 2018, 38(6): 580-588. |
[4] | PANG Dandan, ZHANG Fen, ZHANG Yazhen, WEI Kang, WANG Liyuan, CHENG Hao. Research Advance on Biosynthesis, Regulation and Function of Anthocyanins in Tea Plant [J]. Journal of Tea Science, 2018, 38(6): 606-614. |
[5] | SHAN Ruiyang, LIN Zhenghe, CHEN Zhihui, ZHONG Qiusheng, YOU Xiaomei, CHEN Changsong. Molecular Cloning and Expression Analysis of Cytochrome P450 CYP71A26 and CYP71B34 Genes in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2018, 38(5): 450-460. |
[6] | GAN Yudi, SUN Kang, LI Huijuan, DU Zhongying, ZHAO Zhen, PANG Xing, LI Xinghui, CHEN Xuan. Effect of Two Prokaryotic Expressed Vectors on the Activity of PPO from Camellia sinensis [J]. Journal of Tea Science, 2018, 38(4): 396-405. |
[7] | YE Xiaoli, PAN Junting, ZHU Jiaojiao, SHU Zaifa, CUI Chuanlei, XING Anqi, NONG Shouhua, ZHU Xujun, FANG Wanping, WANG Yuhua. Cloning and Expression Analysis of Small GTPase (CsRAC5) under Cold Stress in Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2018, 38(2): 146-154. |
[8] | ZHANG Yue, HU Yunfei, WANG Shumao, KE Zixing, LIN Jinke. Bioinformatic Analysis of MYB Transcription Factors Involved in Catechins Biosynthesis in Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2018, 38(2): 162-173. |
[9] | ZHANG Yongheng, WANG Siqing, CHEN Jiangfei, WANG Weidong, ZHOU Tianshan, XIAO Bin, YANG Yajun, YU Youben. Cloning and Expression Analysis of CsSnRK2.1 and CsSnRK2.2 Genes in Tea Plant (Camellia sinensis) under Abiotic Stress [J]. Journal of Tea Science, 2018, 38(2): 183-192. |
[10] | YU Xinlei, AI Yujie, QU Fengfeng, AI Zeyi, LIU Shuyuan, CHEN Yuqiong, NI Dejiang. Metabolomics Application in the Study of Tea Quality Formation [J]. Journal of Tea Science, 2018, 38(1): 20-32. |
[11] | LIN Weidong, CHEN Zhidan, SUN Weijiang, YANG Ruxing. Analysis of Genetic Diversity of Fujian Tea Varieties by SCoT Markers [J]. Journal of Tea Science, 2018, 38(1): 43-57. |
[12] | SHEN Wei, TENG Ruimin, LI Hui, LIU Zhiwei, WANG Yongxin, WANG Wenli, ZHUANG Jing. Cloning of a MADS-box Transcription Factor Gene from Camellia sinensis and its Response to Abiotic Stresses [J]. Journal of Tea Science, 2017, 37(6): 575-585. |
[13] | GUO Junhong, WANG Weidong, GU Xing, GUO Shasha, GAO Yuefang, YANG Yajun, XIAO Bin. Cloning and Expression Analysis of WRKY Transcription Factor Gene CsWRKY57 in Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2017, 37(4): 411-419. |
[14] | LI Hailin, WANG Liyuan, CHENG Hao, WEI Kang, RUAN Li, WU Liyun. The Effects of Nitrogen Supply on Agronomic Traits and Chemical Components of Tea Plant [J]. Journal of Tea Science, 2017, 37(4): 383-391. |
[15] | LI Xiwang, LIU Fengjing, SHAO Shengrong, SU Liang, JIN Limeng, LOU Yonggen, SUN Xiaoling. Research Progress and Prospect of Green Control Techniques of Ectropis obliqua [J]. Journal of Tea Science, 2017, 37(4): 325-331. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|