[1] Chen X M, Kitts D.Identification and quantification of α-dicarbonyl compounds produced in different sugar-amino acid Maillard reaction model systems[J]. Food Research International, 2011, 44(9): 2775-2782. [2] Zheng J, Ou J Y, Ou S Y.Alpha-dicarbonyl compounds[M]//Wang S. Chemical hazards in thermally-processed foods. Singapore: Springer Singapore, 2019: 19-46. [3] Navarro M, Atzenbeck L, Pischetsrieder M, et al.Investigations on the reaction of C3 and C6 α-dicarbonyl compounds with hydroxytyrosol and related compounds under competitive conditions[J]. Journal of Agricultural and Food Chemistry, 2016, 64(32): 6327-6332. [4] Hellwig M, Degen J, Henle T.3-Deoxygalactosone, a “New” 1,2-dicarbonyl compound in milk products[J]. Journal of Agricultural and Food Chemistry, 2010, 58(19): 10752-10760. [5] Zhu H, Poojary M M, Andersen M L, et al.Trapping of carbonyl compounds by epicatechin: reaction kinetics and identification of epicatechin adducts in stored UHT milk[J]. Journal of Agricultural and Food Chemistry, 2020, 68(29): 7718-7726. [6] Fewkes J J, Dordevic A L, Murray M, et al.Association between endothelial function and skin advanced glycation end-products (AGEs) accumulation in a sample of predominantly young and healthy adults[J]. Cardiovascular Diabetology, 2024, 23(1): 332. doi:10.1186/s12933-024-02428-3. [7] Nowotny K, Schröter D, Schreiner M, et al.Dietary advanced glycation end products and their relevance for human health[J]. Ageing Research Reviews, 2018, 47: 55-66. [8] He C, Sabol J, Mitsuhashi T, et al.Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration[J]. Diabetes, 1999, 48(6): 1308-1315. [9] Flaig M, Qi S, Wei G D, et al.Characterization of the key odorants in a high-grade Chinese green tea beverage (Camellia sinensis; Jingshan cha) by means of the sensomics approach and elucidation of odorant changes in tea leaves caused by the tea manufacturing process[J]. Journal of Agricultural and Food Chemistry, 2020, 68(18): 5168-5179. [10] Wang B Y, Qu F F, Wang P Q, et al.Characterization analysis of flavor compounds in green teas at different drying temperature[J]. LWT, 2022, 161: 113394. doi:10.1016/j.lwt.2022.113394. [11] Zhang W J, Cao J X, Li Z G, et al.HS-SPME and GC/MS volatile component analysis of Yinghong No. 9 dark tea during the pile fermentation process[J]. Food Chemistry, 2021, 357: 129654. doi:10.1016/j.foodchem.2021.129654. [12] Su D, He J J, Zhou Y Z, et al.Aroma effects of key volatile compounds in Keemun black tea at different grades: HS-SPME-GC-MS, sensory evaluation, and chemometrics[J]. Food Chemistry, 2022, 373: 131587. doi:10.1016/j.foodchem.2021.131587. [13] Guo X Y, Song C K, Ho C T, et al.Contribution of L-theanine to the formation of 2,5-dimethylpyrazine, a key roasted peanutty flavor in Oolong tea during manufacturing processes[J]. Food Chemistry, 2018, 263: 18-28. [14] Yang Y Q, Hua J J, Deng Y L, et al.Aroma dynamic characteristics during the process of variable-temperature final firing of Congou black tea by electronic nose and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry[J]. Food Research International, 2020, 137: 109656. doi:10.1016/j.foodres.2020.109656. [15] Zhu H K, Niu L, Zhu L, et al.Contents of α-dicarbonyl compounds in commercial black tea and affected by the processing[J]. Food Research International, 2024, 178: 113876. doi:10.1016/j.foodres.2023.113876. [16] Wang Y, Ho C T.Flavour chemistry of methylglyoxal and glyoxal[J]. Chemical Society Reviews, 2012, 41(11): 4140-4149. [17] Zhang W, Poojary M M, Rauh V, et al.Quantitation of α-dicarbonyls and advanced glycation endproducts in conventional and lactose-hydrolyzed ultrahigh temperature milk during 1 year of storage[J]. Journal of Agricultural and Food Chemistry, 2019, 67(46): 12863-12874. [18] 颜雨涵, 黄啸天, 张依琳, 等. 氨基酸与糖醇结构对褐变反应的影响及机制研究[J]. 食品与发酵工业, 2025, 51(1): 167-173. Yan Y H, Huang X T, Zhang Y L, et al.Effect and mechanism of the structure of amino acids and sugar alcohols on browning reaction[J]. Food and Fermentation Industries, 2025, 51(1): 167-173. [19] Hellwig M, Gensberger-Reigl S, Henle T, et al.Food-derived 1,2-dicarbonyl compounds and their role in diseases[J]. Seminars in Cancer Biology, 2018, 49: 1-8. [20] Nobis A, Kunz O S, Gastl M, et al.Influence of 3-DG as a key precursor compound on aging of lager beers[J]. Journal of Agricultural and Food Chemistry, 2021, 69(12): 3732-3740. [21] Zhu J X, Chen Z Y, Chen L, et al.Comparison and structural characterization of polysaccharides from natural and artificial Se-enriched green tea[J]. International Journal of Biological Macromolecules, 2019, 130: 388-398. [22] Aktağ I G, Gökmen V.Investigations on the formation of α-dicarbonyl compounds and 5-hydroxymethylfurfural in apple juice, orange juice, and peach puree under industrial processing conditions[J]. European Food Research and Technology, 2021, 247(4): 797-805. [23] Schulz A, Trage C, Schwarz H, et al.Electrospray ionization mass spectrometric investigations of α-dicarbonyl compounds: probing intermediates formed in the course of the nonenzymatic browning reaction of L-ascorbic acid[J]. International Journal of Mass Spectrometry, 2007, 262(3): 169-173. [24] Hollnagel A, Kroh L W.3-Deoxypentosulose: an α-dicarbonyl compound predominating in nonenzymatic browning of oligosaccharides in aqueous solution[J]. Journal of Agricultural and Food Chemistry, 2002, 50(6): 1659-1664. [25] Collard F O, Delpierre G, Stroobant V, et al.A mammalian protein homologous to fructosamine-3-kinase is a ketosamine-3-kinase acting on psicosamines and ribulosamines but not on fructosamines[J]. Diabetes, 2003, 52(12): 2888-2895. [26] Glomb M A, Gobert J, Voigt M.Dicarbonyls from Maillard degradation of glucose and maltose[M]//Mottram D S, Taylor A J. Controlling Maillard pathways to generate flavors. Washington: American Chemical Society, 2010: 35-44. [27] Maasen K, Scheijen J L J M, Opperhuizen A, et al. Quantification of dicarbonyl compounds in commonly consumed foods and drinks; presentation of a food composition database for dicarbonyls[J]. Food Chemistry, 2021, 339: 128063. doi:10.1016/j.foodchem.2020.128063. [28] 刘均, 冯巩, 谭蓉. 扁形绿茶加工过程中不同工艺对其抗氧化生物活性的影响[J]. 现代食品科技, 2024, 41(4): 275-285. Liu J, Feng G, Tan R.Effect of different processing technology on anti-oxidative bioactivity of flattened green tea during processing[J]. Modern Food Science and Technology, 2024, 41(4): 275-285. [29] 彭叶, 郜秋艳, 李美凤, 等. 不同杀青方式对黄金芽绿茶γ-氨基丁酸含量及品质成分的影响[J]. 南方农业学报, 2023, 54(10): 3020-3028. Peng Y, Gao Q Y, Li M F, et al.Effects of different fixation methods on γ-aminobutyric acid content and quality components of Huangjinya green tea[J]. South China Agricultural Journal, 2023, 54(10): 3020-3028. [30] 楼桢优, 周拥军, 钟维标, 等. 不同闷黄时间对平阳黄汤滋味成分和品质的影响[J]. 中国食品学报, 2024, 24(6): 297-307. Lou Z Y, Zhou Y J, Zhong W B, et al.The effects of different yellowing time on the taste quality components of ‘Pingyanghuangtang’[J]. Journal of Food Science, 2024, 24(6): 297-307. [31] 宋加艳, 何加兴, 欧伊伶, 等. 碧香早夏季鲜叶加工乌龙茶过程中品质成分动态变化[J]. 现代食品科技, 2021, 37(2): 238-248, 163. Song J Y, He J X, Ou Y L, et al.Dynamic changes in quality and composition of Oolong tea made with fresh Bixiangzao summer tea leaves during processing[J]. Modern Food Science and Technology, 2021, 37(2): 238-248, 163. [32] 苏小琴, 左小博, 杨秀芳, 等. 绿茶低温负压干燥工艺优化研究[J]. 保鲜与加工, 2019, 19(3): 97-103. Su X Q, Zuo X B, Yang X F, et al.Optimization of low-temperature vacuum drying technology for green tea[J]. Preservation and Processing, 2019, 19(3): 97-103. [33] 陈海强, 何辉星, 赵崇真. 英葟黄茶加工关键技术初报[J]. 福建茶叶, 2024, 46(10): 24-26. Chen H Q, He H X, Zhao C Z.Preliminary report on the key technologies for the processing of Yinghuang yellow tea[J]. Tea in Fujian, 2024, 46(10): 24-26. [34] 曾愉, 陈维, 马成英, 等. 干热后处理前后花香型乌龙茶的品质比较[J]. 现代食品科技, 2023, 39(3): 288-297. Zeng Y, Chen W, Ma C Y, et al.Comparison of the quality of flower-scented Oolong tea before and after the post-dry heat treatment[J]. Modern Food Science and Technology, 2023, 39(3): 288-297. [35] 梁子钧, 俞滢, 张磊, 等. 基于HS-SPME-GC-MS分析茶树新品系‘白云0492’白茶香气特征成分[J]. 食品科学, 2023, 44(22): 313-321. Liang Z J, Yu Y, Zhang L, et al.Headspace solid phase microextraction combined with gas chromatography-mass spectrometry analysis of aroma characteristics of white tea from new strain ‘Baiyun 0492’[J]. Food Science, 2023, 44(22): 313-321. [36] Khan M, Liu H L, Wang J, et al.Inhibitory effect of phenolic compounds and plant extracts on the formation of advanced glycation end products: a comprehensive review[J]. Food Research International, 2020, 130: 108933. doi:10.1016/j.foodres.2019.108933. [37] Jost T, Henning C, Heymann T, et al.Comprehensive analyses of carbohydrates, 1,2-dicarbonyl compounds, and advanced glycation end products in industrial bread making[J]. Journal of Agricultural and Food Chemistry, 2021, 69(12): 3720-3731. [38] 彭影琦, 龙军, 林玲, 等. 相同加工原料下六大茶类抑菌效果比较[J]. 食品与机械, 2017, 33(7): 47-50, 76. Peng Y Q, Long J, Lin L, et al.Comparison on anti-microbial activities of six kinds of teas processed by the same raw materials[J]. Food and Machinery, 2017, 33(7): 47-50, 76. [39] Zhang Q Z, Huang Z J, Wang Y, et al.Chinese bayberry (Myrica rubra) phenolics mitigated protein glycoxidation and formation of advanced glycation end-products: a mechanistic investigation[J]. Food Chemistry, 2021, 361: 130102. doi:10.1016/j.foodchem.2021.130102. [40] Chen P S, Cui H P, Feng L H, et al.Effect of the C-ring structure of flavonoids on the yield of adducts formed by the linkage of the active site at the A-ring and Amadori rearrangement products during the Maillard intermediate preparation[J]. Journal of Agricultural and Food Chemistry, 2022, 70(10): 3280-3288. [41] 徐旭华, 黄文洁, 陈旭峰, 等. ‘丹霞2号’红茶加工过程中品质特征成分的动态变化研究[J]. 园艺学报, 2024, 51(1): 145-161. Xu X H, Huang W J, Chen X F, et al.Research on the dynamic change of tea quality-related chemical compositions during ‘Danxia 2’ black tea processing[J]. Acta Horticulturae Sinica, 2024, 51(1): 145-161. [42] Jiao Y, He J L, Li F L, et al.Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine in tea and the factors affecting their formation[J]. Food Chemistry, 2017, 232: 683-688. [43] 许婧, 黄友谊, 黄进, 等. 茶叶不同提取物及不同茶叶对结核分枝杆菌抑制作用的研究[J]. 茶叶科学, 2024, 44(2): 341-349. Xu J, Huang Y Y, Huang J, et al.Research on the inhibition of tea extracts and different types of tea on Mycobacterium tuberculosis[J]. Journal of Tea Science, 2024, 44(2): 341-349. [44] Mavric E, Wittmann S, Barth G, et al.Identification and quantification of methylglyoxal as the dominant antibacterial constituent of manuka (Leptospermum scoparium) honeys from New Zealand[J]. Molecular Nutrition & Food Research, 2008, 52(4): 483-489. [45] Brighina S, Restuccia C, Arena E, et al.Antibacterial activity of 1,2-dicarbonyl compounds and the influence of the in vitro assay system[J]. Food Chemistry, 2020, 311: 125905. doi:10.1016/j.foodchem.2019.125905. [46] Oelschlaegel S, Gruner M, Wang P N, et al.Classification and characterization of manuka honeys based on phenolic compounds and methylglyoxal[J]. Journal of Agricultural and Food Chemistry, 2012, 60(29): 7229-7237. |