Journal of Tea Science ›› 2019, Vol. 39 ›› Issue (4): 382-391.doi: 10.13305/j.cnki.jts.2019.04.003
Previous Articles Next Articles
LIU Sai1,2, LIU Shuoqian1,2,3, LONG Jinhua1,2, WU Dunchao1,2, CHEN Yuhong1,2, LIU Liping1,2, LIU Zhonghua1,2,3, TIAN Na1,2,3,*
Received:
2019-03-08
Online:
2019-08-15
Published:
2019-08-19
CLC Number:
LIU Sai, LIU Shuoqian, LONG Jinhua, WU Dunchao, CHEN Yuhong, LIU Liping, LIU Zhonghua, TIAN Na. Functional Analysis of Glutathione Peroxidase Encoding Gene CsGPX1 in Camellia sinensis[J]. Journal of Tea Science, 2019, 39(4): 382-391.
[1] | 肖蓉, 慧珍, 张小娟, 等. 干旱和盐胁迫条件下枣树谷胱甘肽过氧化物酶基因(ZjGPX)的差异表达及功能分析[J]. 中国农业科学, 2015, 48(14): 2806-2817. |
[2] | 乔新荣, 张继英. 植物谷胱甘肽过氧化物酶(GPX)研究进展[J]. 生物技术通报, 2016, 32(9): 7-13. |
[3] | 马亭亭, 周宜君, 高飞, 等. 盐芥谷胱甘肽过氧化物酶基因(ThGPX6)的克隆及表达分析[J]. 植物遗传资源学报, 2012, 13(2): 252-258. |
[4] | Sugimoto M, Sakamoto W.Putative phospholipid hydroperoxide glutathione peroxidase gene from Arabidopsis thaliana induced by oxidative stress[J]. Genes & Genetic Systems, 1997, 72(5): 311-316. |
[5] | Li W J, Feng H, Fan J H, et al.Molecular cloning and expression of a phospholipid hydroperoxide glutathione peroxidase homolog in Oryza sativa [J]. Biochim Biophys Acta, 2000, 1493(1/2): 225-230. |
[6] | Depege N, Drevet J, Boyer N.Molecular cloning and characterization of tomato cDNAs encoding glutathione peroxidase-like proteins[J]. European Journal of Biochemistry, 1998, 253(2): 445-451. |
[7] | Avsian-Kretchmer O, Eshdat Y, Gueta-Dahan Y, et al.Regulation of stress-induced phospholipid hydroperoxide glutathione peroxidase expression in citrus[J]. Planta, 1999, 209(4): 469-477. |
[8] | Sugimoto M, Furui S, Suzuki Y.Molecular cloning and characterization of a cDNA encoding putative phospholipid hydroperoxide glutathione peroxidase from spinach[J]. Biosciences Biotechnology and Biochemistry, 1997, 61(8): 1379-1381. |
[9] | 王菲菲, 丁明全, 邓澍荣, 等. 胡杨谷胱甘肽过氧化物酶PeGPX基因的克隆及转化植株耐盐性分析[J]. 基因组学与应用生物学, 2012, 31(3): 231-239. |
[10] | 陈义挺. 龙眼体胚发生过程中的CDC48和GPX基因克隆与表达[D]. 福州: 福建农林大学, 2009. |
[11] | 乔新荣, 张继英. 茶树CsGPX基因克隆及干旱胁迫下的表达分析[J]. 江苏农业科学, 2018, 46(8): 42-44. |
[12] | 谭和平, 周李华, 钱杉杉, 等. 茶树转基因技术研究进展[J]. 武汉植物学研究, 2009, 27(3): 323-326. |
[13] | Chen S, Songkumarn P, Liu J, et al.A Versatile zero background T-vector system for gene cloning and functional genomics[J]. Plant Physiology, 2009, 150(3): 1111-1121. |
[14] | Lazo G R, Stein P A, Ludwig R A.A DNA transformation-competent Arabidopsis genomic library in Agrobacterium[J]. Biotechnology. 1991, 9(10): 963-967. |
[15] | 赵东, 刘祖生, 陆建良, 等. 根癌农杆菌介导茶树转化研究[J]. 茶叶科学, 2001, 21(2): 108-111. |
[16] | 张金丽, 张罗霞, 杨坤梅, 等. 改良CTAB法对山茶属植物基因组DNA提取的比较研究[J]. 江西农业大学学报, 2017, 39(4): 785-791. |
[17] | 李合生. 现代植物生理学[M]. 北京: 高等教育出版社, 2011: 100. |
[18] | Faltin Z, Holland D, Velcheva M, et a1. Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation[J]. Plant Cell Physiology, 2010, 51(7): 1151-1162 |
[19] | Gaber A, Ogata T, Maruta T, et al.The Involvement of Arabidopsis glutathione peroxidase 8 in the suppression of oxidative damage in the nucleus and cytosol[J]. Plant and Cell Physiology, 2012, 53(9): 1596-1606. |
[20] | Milla M, Maurer A, Huete A R, et al.Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses though diverse signaling pathways[J]. The Plant Journal, 2003, 36(5): 602-615. |
[21] | Herbette S, Labrouhe D T, Drevet J R, et al.Transgenic tomatoes showing higher glutathione peroxydase antioxidant activity are more resistant to an abiotic stress but more susceptible to biotic stresses[J]. Plant Science, 2011, 180(3): 548-553. |
[22] | 齐增园, 陶鹏, 李必元, 等. 白菜谷胱甘肽过氧化物酶基因GPX的鉴定与分析[J]. 浙江农业学报, 2016, 28(01): 64-69. |
[23] | 徐泽, 胡翔, 邓敏. 干旱胁迫对茶树的几种抗旱性生理指标的影响[C]//中国茶叶学会, 台湾茶协会. 第四届海峡两岸茶业学术研讨会论文集. 2006: 113-118. |
[24] | 张进. 泛素基因在烟草耐盐性中的作用及其生理机制研究[D]. 泰安: 山东农业大学, 2009. |
[25] | 蔡永智. 转CBF1和KatG基因棉花抗旱性分析[D]. 石河子: 石河子大学, 2013.杜世章, 代其林, 刘婷婷, 等. 60Coγ射线辐照对转基因和非转基因烟草抗氧化酶活性的影响[J]. 核农学报, 2011, 25(3): 456-460, 497. |
[1] | WANG Liubin, HUANG Liyun, TENG Cuiqin, WU Liyun, CHENG Hao, YU Cuiping, WANG Liyuan. Genetic and Phylogenetic Analysis for Germplasm Resources of Camellia sinensis from Wuzhou City [J]. Journal of Tea Science, 2022, 42(5): 601-609. |
[2] | ZHOU Hanchen, YANG Jihong, XU Yujie, WU Qiong, LEI Pandeng. Phylogenetic Analysis of NUDX1 Gene Involved in Geraniol Biosynthesis [J]. Journal of Tea Science, 2022, 42(5): 638-648. |
[3] | ZHAO Dongwei. Nomenclature, Typification, and Natural Distribution of Camellia sinensis var. assamica (Theaceae) [J]. Journal of Tea Science, 2022, 42(4): 491-499. |
[4] | XING Anqi, WU Zichen, XU Xiaohan, SUN Yi, WANG Genmei, WANG Yuhua. Research Advances of Fluoride Accumulation Mechanisms in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 301-315. |
[5] | WANG Tao, WANG Yiqing, QI Siyu, ZHOU Zhe, CHEN Zhidan, SUN Weijiang. Identification and Transcriptional Regulation of CLH Gene Family and Expression Analysis in Albino Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 331-346. |
[6] | LIU Fuhao, FAN Yangen, WANG Yu, MENG Fanyue, ZHANG Lixia. Screening and Identification of Chaperone CsHIPP26.1 Chelating Ions in Tea Cultivar ‘Huangjinya’ [J]. Journal of Tea Science, 2022, 42(2): 179-186. |
[7] | WANG Pengjie, YANG Jiangfan, ZHANG Xingtan, YE Naixing. Research Advance of Tea Plant Genome and Sequencing Technologies [J]. Journal of Tea Science, 2021, 41(6): 743-752. |
[8] | ZHOU Hanchen, LEI Pandeng. The Functional Identification of Two Alternative Splicing Transcripts of CsNES [J]. Journal of Tea Science, 2021, 41(6): 753-760. |
[9] | YAN Minghui, LIU Ke, WANG Man, LYU Ying, ZHANG Qian. Complete Chloroplast Genome of Camellia sinensis cv. Xinyang 10 and Its Phylogenetic Evolution [J]. Journal of Tea Science, 2021, 41(6): 777-788. |
[10] | LIU Miaomiao, ZANG Liansheng, SUN Xiaoling, ZHOU Zhongshi, YE Meng. Cloning and Expression Analysis of CsWRKY17 Transcription Factor in Tea Plants [J]. Journal of Tea Science, 2021, 41(5): 631-642. |
[11] | JIAO Haizhen, SHAO Chenyu, CHEN Jianjiao, ZHANG Chenyu, CHEN Jiahao, LI Yunfei, SHEN Chengwen. Dynamic Changes of Physiological Responses and Antioxidant Enzyme Activities in Tea Root System under Severe Shading and Removal of Shading [J]. Journal of Tea Science, 2021, 41(5): 695-704. |
[12] | LIN Xinying, WANG Pengjie, CHEN Xuejin, GUO Yongchun, GU Mengya, ZHENG Yucheng, YE Naixing. Identification of LOX Gene Family in Camellia sinensis and Expression Analysis in the Process of White Tea Withering [J]. Journal of Tea Science, 2021, 41(4): 482-496. |
[13] | WANG Yanding, WANG Huan, LI Nana, WANG Lu, HAO Xinyuan, WANG Yuchun, DING Changqing, YANG Yajun, WANG Xinchao, QIAN Wenjun. Identification and Expression Analysis of Glucose-6-hosphate Dehydrogenase Gene (CsG6PDHs) in Camellia sinensis [J]. Journal of Tea Science, 2021, 41(4): 497-510. |
[14] | CHEN Siwen, KANG Rui, GUO Zhiyuan, ZHOU Qiongqiong, FENG Jiancan. Cloning and Expression Analysis of CsCML16 in Tea Plants (Camellia sinensis) under Low Temperature Stress [J]. Journal of Tea Science, 2021, 41(3): 315-326. |
[15] | ZHAO Yiqing, LIU Zhengjun, ZHANG Tianxin, ZHAO Yanting, XIAO Bin, GAO Yuefang. Cloning of CsCHLI Gene and Its Expression Analysis in Different Albino Tea Cultivars (Camellia sinensis) [J]. Journal of Tea Science, 2021, 41(3): 327-336. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|