[1] 刘春方, 刘文艳, 滕瑞敏, 等. 茶树转录因子CsbHLH137基因鉴定及光合特性与生物钟响应分析[J]. 西北植物学报, 2022, 42(2): 210-220.
Liu C F, Liu W Y, Teng R M, et al.Identification and response analysis of the CsHLH137 transcription factor gene to photosynthetic characteristics and circadian clock in Camellia sinesis[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(2): 210-220.
[2] 胡志航, 秦志远, 李静文, 等. 茶树捕光色素蛋白复合体基因CsLhcb2的鉴定及低温响应分析[J]. 茶叶科学, 2023, 43(2): 183-193.
Hu Z H, Qin Z Y, Li J W, et al.Identification and low temperature response analysis of CsLhcb2 gene of light-harvesting chlorophyll-protein complex in tea plant[J]. Journal of Tea Science, 2023, 43(2): 183-193.
[3] 肖富良, 翟秀明, 李解, 等. 光质调控茶树生长发育与品质形成的研究进展[J]. 激光生物学报, 2023, 32(2): 111-117.
Xiao F L, Zhai X M, Li J, et al.Research progress on light quality regulating the growth and development and quality formation of tea plants[J]. Acta Laser Biology Sinica, 2023, 32(2): 111-117.
[4] 韩冬, 杨菲, 杨再强, 等. 高温对茶树叶片光合及抗逆特性的影响和恢复[J]. 中国农业气象, 2016, 37(3): 297-306.
Han D, Yang F, Yang Z Q, et al.Effect and recovery of high temperature on photosynthetic and stress resistance characteristics of tea leaves[J]. Chinese Journal of Agrometeorology, 2016, 37(3): 297-306.
[5] 赵俊波. 水肥调控对茶树生长和茶叶产量品质影响的研究进展[J]. 亚热带植物科学, 2024, 53(3): 280-284.
Zhao J B.Research progress on the effects of water and fertilizer regulation on tea plant growth and tea yield and quality[J]. Subtropical Plant Science, 2024, 53(3): 280-284.
[6] 符继红, 孙晓红, 王吉德, 等. 植物激素定量分析方法研究进展[J]. 科学通报, 2010, 55(33): 3163-3176.
Fu J H, Sun X H, Wang J D, et al.Research progress on quantitative analysis methods of plant hormones[J]. Scientific Bulletin, 2010, 55(33): 3163-3176.
[7] Mitchell J W, Mandava N, Worley J F, et al.Brassins: a new family of plant hormones from rape pollen[J]. Nature, 1970, 225(5237): 1065-1066.
[8] Bajguz A.Metabolism of brassinosteroids in plants[J]. Plant Physiology and Biochemistry, 2007, 45(2): 95-107.
[9] Clouse S D, Sasse J M.Brassinosteroids: essential regulators of plant growth and development[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 427-451. doi: 10.1146/annurev.arplant.49.1.427.
[10] Gudesblat G E, Russinova E.Plants grow on brassinosteroids[J]. Current Opinion in Plant Biology, 2011, 14(5): 530-537.
[11] Fujioka S, Noguchi T, Watanabe T, et al.Biosynthesis of brassinosteroids in cultured cells of Catharanthus roseus[J]. Phytochemistry, 2000, 53(5): 549-553.
[12] Fujioka S, Takatsuto S, Yoshida S.An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway[J]. Plant Physiology, 2002, 130(2): 930-939.
[13] Szekeres M, Németh K, Koncz-Kálmán Z, et al.Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis[J]. Cell, 1996, 85(2): 171-182.
[14] Fujioka S, Yokota T.Biosynthesis and metabolism of brassinosteroids[J]. Annual Review of plant biology, 2003, 54: 137-164. doi: 10.1146/annurev.arplant.54.031902.134921.
[15] Li J, Nagpal P, Vitart V, et al.A role for brassinosteroids in light-dependent development of Arabidopsis[J]. Science, 1996, 272(5260): 398-401.
[16] Noguchi T, Fujioka S, Takatsuto S, et al.Arabidopsis det2 is defective in the conversion of (24R)-24-methylcholest-4-En-3-one to (24R)-24-methyl-5α-cholestan-3-one in brassinosteroid biosynthesis[J]. Plant Physiology, 1999, 120(3): 833-840.
[17] Chory J, Nagpal P, Peto C, et al.Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis[J]. Plant Cell, 1991, 3(5): 445-459.
[18] Hou S, Niu H, Tao Q.A mutant in the CsDET2 gene leads to a systemic brassinosteriod deficiency and super compact phenotype in cucumber (Cucumis sativus L.)[J]. Theoretical and Applied Genetics, 2017, 130(8): 1693-1703.
[19] Suzuki Y, Saso K, Fujioka S, et al.A dwarf mutant strain of Pharbitis nil, Uzukobito (kobito), has defective brassinosteroid biosynthesis[J]. The Plant Journal, 2003, 36(3): 401-410.
[20] Hartwig T, Chuck G S, Fujioka S, et al.Brassinosteroid control of sex determination in maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): 19814-19819.
[21] Nomura T, Jager C E, Kitasaka Y, et al.Brassinosteroid deficiency due to truncated steroid 5α-reductase causes dwarfism in the lk mutant of pea[J]. Plant Physiology, 2004, 135(4): 2220-2229.
[22] Qiao Z, Li J, Zhang X, et al.Genome-wide identification, expression analysis, and subcellular localization of DET2 gene family in Populus yunnanensis[J]. Genes, 2024, 15(2): 148. doi:10.3390/genes15020148.
[23] Luo M, Xiao Y, Li X, et al.GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation[J]. The Plant Journal, 2007, 51(3): 419-430.
[24] 李治鑫, 李鑫, 范利超, 等. 外源油菜素内酯对茶树光合特性的影响[J]. 茶叶科学, 2015, 35(6): 543-550.
Li Z X, Li X, Fan L C, et al.Effect of exogenous brassinolide on photosynthetic properties of tea plant[J]. Journal of Tea Science, 2015, 35(6): 543-550.
[25] 李治鑫, 李鑫, 韩文炎. 外源24-表油菜素内酯诱导茶树(Camellia sinensis L.)耐热性的生理机制[J]. 浙江农业学报, 2016, 28(6): 959-965.
Li Z X, Li X, Han W Y, et al.Exogenous 24-epibrassinolide induces Camellia sinensis L. Physiological mechanism of heat tolerance[J]. Acta Agriculturae Zhejiangensis, 2016, 28(6): 959-965.
[26] 梁思慧, 杨春, 林开勤, 等. 2,4-表油菜素内酯对低温胁迫下茶树生理特性的影响[J]. 贵茶, 2023(4): 27-33.
Liang S H, Yang C, Lin K Q, et al.Effect of 2,4-epibrassinolide on physiological characteristics of tea plants under low temperature stress[J]. Journal of Guizhou Tea, 2023(4): 27-33.
[27] Li X, Ahammed G J, Li Z X, et al.Brassinosteroids improve quality of summer tea (Camellia sinensis L.) by balancing biosynthesis of polyphenols and amino acids[J]. Frontiers in Plant Science, 2016, 7: 1304. doi:10.3389/fpls.2016.01304.
[28] Lan Z, Zheng Z, Jalal G A, et al.2,4-epibrassinolide enhances resistance against colletotrichum fructicola by promoting lignin biosynthesis in Camellia sinensis L.[J]. Journal of Plant Growth Regulation, 2022, 42(3): 1558-1566.
[29] Wang Y X, Liu Z W, Wu Z J, et al.Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant (Camellia sinensis)[J]. Scientific Reports, 2018, 8(1): 3949. doi: 10.1038/s41598-018-22275-z.
[30] Felsenstein J.Evolutionary trees from DNA sequences: a maximum likelihood approach[J]. Journal of Molecular Evolution, 1981, 17(6): 368-376.
[31] Wu Z J, Tian C, Jiang Q, et al.Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis)[J]. Scientific Reports, 2016, 6(1): 19748. doi: 10.1038/srep19748.
[32] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta \Delta \mathrm{C}_{\mathrm{T}}}$ method[J]. Methods, 2001, 25(4): 402-408.
[33] Zhang H H, Yang D, Wang P Q, et al.Feedback inhibition might dominate the accumulation pattern of BR in the new shoots of tea plants (Camellia sinensis)[J]. Frontiers in Genetics, 2022, 12: 809608. doi: 10.3389/fgene.2021.809608.
[34] Zhang Y Z, Zhang Y L, Yang Z C, et al.Genome-wide identification, characterization, and expression analysis of BES1 family genes in 'Tieguanyin' tea under abiotic stress[J]. Plants, 2025, 14(3): 473. doi: 10.3390/plants14030473.
[35] Yang D Y, Ren N, Yang J Y, et al.The brassinosteroid-mediated Camellia sinensis synthase kinase1 and Camellia sinensis sumo conjugation enzyme 1 module positively regulates the cold tolerance of tea plant[J]. International Journal of Biological Macromolecules, 2025, 309(4): 142854. doi: 10.1016/j.ijbiomac.2025.142854.
[36] Jin Q F, Wang Z, Chen Y N, et al.Transcriptomics analysis reveals the signal transduction mechanism of brassinolides in tea leaves and its regulation on the growth and development of Camellia sinensis[J]. BioMed Central Genomics, 2022, 23(1): 29. doi: 10.1186/s12864-021-08179-9.
[37] Chase M W, Christenhusz M J W, Fay M F, et al. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV[J]. Botanical Journal of the Linnean Society, 2016, 181(1): 1-20.
[38] Thigpen A E, Russell D W.Four-amino acid segment in steroid 5α-reductase 1 confers sensitivity to finasteride, a competitive inhibitor[J]. The Journal of Biological Chemistry, 1992, 267(12): 8577-8583.
[39] Bishop G J.Brassinosteroid mutants of crops[J]. Journal of Plant Growth Regulation, 2003, 22(4): 325-335.
[40] Shimada Y, Goda H, Nakamura A, et al.Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis[J]. Plant Physiology, 2003, 131(1): 287-297.
[41] Tanaka K, Asami T, Yoshida S, et al.Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism[J]. Plant Physiology, 2005, 138(2): 1117-1125.
[42] Sahni S, Prasad B D, Liu Q, et al.Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance[J]. Scientific Reports, 2016, 6: 28298. doi: 10.1038/srep28298.
[43] Unterholzner S J, Rozhon W, Papacek M, et al.Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis[J]. The Plant Cell, 2015, 27(8): 2261-2272 |