Journal of Tea Science ›› 2019, Vol. 39 ›› Issue (4): 392-402.doi: 10.13305/j.cnki.jts.2019.04.004
Previous Articles Next Articles
GUO Yongchun, WANG Pengjie, CHEN Di, ZHENG Yucheng, CHEN Xuejin, YE Naixing*
Received:
2019-02-11
Online:
2019-08-15
Published:
2019-08-19
CLC Number:
GUO Yongchun, WANG Pengjie, CHEN Di, ZHENG Yucheng, CHEN Xuejin, YE Naixing. Genome-wide Identification and Expression Analysis of SRO Gene Family in Camellia sinensis[J]. Journal of Tea Science, 2019, 39(4): 392-402.
[1] | 岳川, 曹红利, 郝心愿, 等. 茶树CsASR基因的克隆及其表达分析[J]. 茶叶科学, 2017, 37(4): 399-410. |
[2] | Liu S, Liu S, Wang M, et al.A wheat SIMILAR TO RCD-ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity[J]. The Plant Cell, 2014, 26(1): 164-180. |
[3] | You J, Zong W, Du H, et al.A special member of the rice SRO family, OsSRO1c, mediates responses to multiple abiotic stresses through interaction with various transcription factors[J]. Plant Molecular Biology, 2014, 84(6): 693-705. |
[4] | 吕有军, 杨卫军, 赵兰杰, 等. 陆地棉SRO基因家族的鉴定及表达分析[J]. 作物学报, 2017, 43(10): 1468-1479. |
[5] | 赵秋芳, 马海洋, 贾利强, 等. 玉米SRO基因家族的鉴定及表达分析[J]. 中国农业科学, 2018, 51(15): 196-206. |
[6] | Jaspers P, Overmyer K, Wrzaczek M, et al.The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants[J]. BMC Genomics, 2010, 11: 170. DOI: 10.1186/1471-2164-11-170. |
[7] | Katiyar-Agarwal S, Zhu J, Kim K, et al.The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2007, 103(49): 18816-18821. |
[8] | Ahlfors R, Overmyer K, Jaspers P, et al.Arabidopsis radical-induced cell death 1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene and methyl jasmonate responses[J]. Plant Cell, 2004, 16(7): 1925-1937. |
[9] | Vainonen J P, Jaspers P, Wrzaczek M, et al.RCD1-DREB2A interaction in leaf senescence and stress responses in Arabidopsis thaliana[J]. Biochemical Journal, 2012, 442(3): 573-581. |
[10] | Teotia S, Lamb RS.The paralogous genes RADICAL-INDUCED CELL DEATH and SIMILAR TO RCD ONE1 have partially redundant functions during Arabidopsis development[J]. Plant Physiology, 2009, 151(1): 180-198. |
[11] | Jaspers P, Blomster T, Brosche M, et al.Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors[J]. The Plant Journal, 2009, 60(2): 268-279. |
[12] | Zhao X, Gao L, Jin P, et al.The similar to RCD-one 1 protein SRO1 interacts with GPX3 and functions in plant tolerance of mercury stress[J]. Bioscience Biotechnology and Biochemistry, 2017, 82(1): 1-7. |
[13] | Babajani G, Effendy J, Plant AL.Sl-SROl1 increases salt tolerance and is a member of the radical-induced cell death 1—similar to RCD1 gene family of tomato[J]. Plant Science, 2009, 176(2): 214-222. |
[14] | 李保珠, 赵翔, 赵孝亮, 等. 拟南芥SRO蛋白家族的结构及功能分析[J]. 遗传, 2013, 35(10): 1189-1197. |
[15] | Li H, Li R, Qu F, et al.Identification of the SRO gene family in apples (Malus×domestica) with a functional characterization of MdRCD1[J]. Tree Genetics & Genomes, 2017, 13(5): 94. DOI: 10.1007/s11295-018-1242-4. |
[16] | You J, Zong W, Li X, et al.The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice[J]. Journal of Experimental Botany, 2013, 64(2): 569-583. |
[17] | Wang W, Xin H, Wang M, et al.Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality[J]. Frontiers in Plant Science, 2016, 7: 385. DOI: 10.3389/fpls.2016.00385. |
[18] | Zhou Y, Liu Y, Wang S, et al.Molecular cloning and characterization of galactinol synthases in Camellia sinensis with different responses to biotic and abiotic stressors[J]. Journal of Agricultural and Food Chemistry, 2017, 65(13): 2751-2759. |
[19] | Hou Y, Wu A, He Y, et al.Genome-wide characterization of the basic leucine zipper transcription factors in Camellia sinensis[J]. Tree Genetics & Genomes, 2018, 14(2): 27. DOI: 10.1007/s11295-018-1242-4. |
[20] | Liu L, Li Y, She G, et al.Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading[J]. BMC Plant Biology, 2018, 18(1): 233. DOI: 10.1186/s12870-018-1440-0. |
[21] | Zhang Q, Cai M, Yu X, et al.Transcriptome dynamics of Camellia sinensis in response to continuous salinity and drought stress[J]. Tree Genetics & Genomes, 2017, 13(4): 1-17. |
[22] | Wei C, Yang H, Wang S, et al.Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proceedings of the National Academy of Sciences, 2018, 115(18): 4151-4158. |
[23] | Xia EH, Zhang HB, Sheng J, et al.The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Mol Plant, 2017, 10(6): 866-877. |
[24] | Bailey TL, Boden M, Buske FA, et al.MEME SUITE: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37: 202-208. |
[25] | Hu B, Jin J, Guo A, et al.GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297. |
[26] | Hall B G.Building phylogenetic trees from molecular data with MEGA[J]. Molecular Biology and Evolution, 2013, 30(5): 1229-1235. |
[27] | Lescot M.PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1): 325-327. |
[28] | Trapnell C, Roberts A, Goff L, et al.Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nature Protocols, 2012, 7(3): 562-578. |
[29] | Anders S, Pyl P T, Huber W.HTSeq—a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015, 31(2): 166-169. |
[30] | Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4): 402-408. |
[31] | 魏瑞敏, 郑井元, 刘峰, 等. 辣椒bZIP家族基因的鉴定与表达分析[J]. 园艺学报, 2018, 45(8): 1535-1550. |
[32] | Wang YX, Liu ZW, Wu ZJ, et al.Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant (Camellia sinensis)[J]. Scientific Reports, 2018, 8(1): 3949. DOI: 10.1038/s41598-018-22275-z. |
[33] | Xu G, Guo C, Shan H, et al.Divergence of duplicate genes in exon-intron structure[J]. Proceedings of the National Academy of Sciences, 2012, 109(4): 1187-1192. |
[34] | 岳川, 曹红利, 王赞, 等. 茶树水通道蛋白基因的克隆与表达分析[J]. 西北植物学报, 2018, 38(8): 1419-1427. |
[1] | ZHU Qian, SHAO Chenyu, ZHOU Biao, LIU Shuoqian, LIU Zhonghua, TIAN Na. Identification of Tea ICE Gene Family and Cloning and Expression Analysis of CsICE43 under Low-temperature [J]. Journal of Tea Science, 2025, 45(1): 43-60. |
[2] | YIN Minghua, ZHANG Mutong, XU Zilin, OUYANG Qian, WANG Meixuan, LI Wenting. Analysis of the Structural Characteristics and Codon Usage Biase of the Mitochondrial Genome in Tea Cultivar ‘Damianbai’ [J]. Journal of Tea Science, 2025, 45(1): 61-78. |
[3] | XU Wenluan, WEN Xiaoju, JIA Yuxuan, NI Dejiang, WANG Mingle, CHEN Yuqiong. Identification of Pectin Methylesterase and Its Inhibitory Subfamily Genes, and Functional Analysis of CsPME55 in Response to Fluoride Stress in Camellia sinensis [J]. Journal of Tea Science, 2024, 44(6): 869-886. |
[4] | LUO Wei, ZHANG Jiaqi, YANG Ni, HU Zhihang, HAO Jiannan, LIU Hui, TAN Shanshan, ZHUANG Jing. Identification and Tissue Expression Analysis of Sucrose Transporter (SUT) Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2024, 44(4): 585-597. |
[5] | YIN Minghua, ZHANG Jiaxin, LE Yun, HE Fanfan, HUANG Tianhui, ZHANG Mutong. Genomic Characteristics, Codon Preference, and Phylogenetic Analysis of Chloroplasts of Camellia sinensis cv. ‘Damianbai’ [J]. Journal of Tea Science, 2024, 44(3): 411-430. |
[6] | ZHONG Sitong, ZHANG Yazhen, YOU Xiaomei, CHEN Zhihui, KONG Xiangrui, LIN Zhenghe, WU Huini, JIN Shan, CHEN Changsong. Identification of CAB Gene Family and Excavation of Key Genes Related to Leaf Yellowing Variationin Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2024, 44(2): 175-192. |
[7] | HUANG Mengdi, CHEN Lan, SU Qin, HU Jinyu, LIU Guizhi, TAN Yueping, LIU Shuoqian, TIAN Na. The Development of CAPS Molecular Markers for CsAL1, A Gene Associated with Early and Late Spring Tip Emergence in Tea Plants [J]. Journal of Tea Science, 2024, 44(2): 207-218. |
[8] | LI Qinghui, LI Rui, WEN Xiaoju, NI Dejiang, WANG Mingle, CHEN Yuqiong. Selection and Validation of Internal Reference Genes for qRT-PCR Analysis under Fluoride Stress in Camellia sinensis Leaves [J]. Journal of Tea Science, 2024, 44(1): 27-36. |
[9] | WU Shuhua, MAO Kaiquan, CHEN Jiaming, LI Jianlong, XUE Jinghua, ZENG Lanting, YANG Yuhua, GU Dachuan. Study on the Influence of Tea Green Leafhopper Infestation on the Tenderness of Fresh Tea Leaves and the Extraction Rate of Metabolites Related to Oolong Tea Quality [J]. Journal of Tea Science, 2023, 43(6): 806-822. |
[10] | MAO Chun, HE Ji, WEN Xuefeng, WU Chuanmei, YI Chengxi, LIAN Jianhong, GUO Wenmin. Advances in the Application of Metabolomics in the Study of Physiological and Biochemical Metabolism of Tea Plants [Camellia sinensis (L.) O. Kuntze] [J]. Journal of Tea Science, 2023, 43(5): 607-620. |
[11] | LI Congcong, WANG Haoqian, YE Yufan, CHEN Yao, REN Hengze, LI Yuteng, HAO Xinyuan, WANG Xinchao, CAO Hongli, YUE Chuan. Study on the Regulation Roles of Plant Hormones on the Growth and Development of Tea Shoots in Spring [J]. Journal of Tea Science, 2023, 43(3): 335-348. |
[12] | MENG Rongjun, CHEN Liang, XU Yuan, LIN Wei, ZHOU Qiwei, XIE Yilin, LAI Dingqing, LAI Jiaye. Genetic Diversity Analysis of Tea Genetic Resources in Sanjiang, Guangxi [J]. Journal of Tea Science, 2023, 43(2): 147-158. |
[13] | CHEN Zhenyan, ZHANG Xiangqin, CHEN Lan, XIE Siyi, LIU Shuoqian, TIAN Na. Identification and Expression Pattern Analysis of NUDIX Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2023, 43(2): 159-172. |
[14] | HU Zhihang, QIN Zhiyuan, LI Jingwen, YANG Ni, CHEN Yi, LI Tong, ZHUANG Jing. Identification of the Light-harvesting Chlorophyll-protein Complex Gene CsLhcb2 and Its Response to Low Temperature in Tea Plants [J]. Journal of Tea Science, 2023, 43(2): 183-193. |
[15] | GAI Shujie, WANG Yixiong, LI Lan, LIU Shuoqian, LI Yinhua, CHENG Xiao, XIA Mao, LIU Zhonghua, ZHOU Zhi. Research Progress of Tea Plant (Camellia sinensis) Growth under Light Regulation [J]. Journal of Tea Science, 2022, 42(6): 753-767. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|