Welcome to Journal of Tea Science,Today is
Basic Information about the Journal
Journal title: Journal of Tea science
Inscription of journal title: ZHU De
Responsible Institution: China Association for Science and Technology
Sponsored by: China Tea Science Society
Tea Research Institute, Chinese Academy of Agricultural Science
Editing and Publishing: Editorial Office, Journal of Tea Science
Start time: 1964
No. of issues: Bi-monthly
Two-Dimensional Code of Tea Science Website
Cooperation

30 Most Down Articles

    Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

    In last 2 years
    Please wait a minute...
    For Selected: Toggle Thumbnails
    The Characteristics of Fungal Community Structure in Tea Rhizosphere Soil Interplanted with Ganoderma lucidum Based on High-throughput Sequencing Technology
    HAN Haidong, ZHOU Liuting, HUANG Xiaoyun, YU Chengran, HUANG Xiusheng
    Journal of Tea Science    2023, 43 (4): 513-524.   DOI: 10.13305/j.cnki.jts.2023.04.009
    Abstract377)      PDF(pc) (1541KB)(2113)       Save
    The tea plantation with Ganoderma lucidum is an ecological cycle intercropping model of resource utilization of tea processing waste, and the composite community formed can cover the ground more thoroughly and play an important role in improving the soil microbial community structure and maintaining the balance of soil microbiological system. In this study, we investigated the changes of tea rhizosphere soil fungal community structure in uncropped (CK), intercropping 1 year (A1), intercropping 2 years (A2) and intercropping 3 years (A3) using Miseq PE300 high-throughput sequencing technology. The results show that: (1) compared with CK, interplanting Ganoderma lucidum significantly increased the contents of available nitrogen, available phosphorus, available potassium and organic carbon in tea rhizosphere soil, with soil of A3 having the highest increase, reaching 32.36%, 13.01%, 69.21% and 9.56%, respectively. (2) The α diversity index shows that the observed species and Chao1 index of tea rhizosphere soil fungal community were CK>A3>A1>A2. ACE index, Shannon index and Simpson index showed A3>CK>A1>A2. (3) The β diversity index shows that the composition and structure of fungal community in tea rhizosphere soil of A2 were relatively different from those of CK, A1 and A3. (4) Through taxonomic analysis, it is found that tea rhizosphere soil fungi were distributed in 18 phyla, 48 classes, 135 orders, 309 families and 632 genera. At phylum level, Ascomycota was the dominant phylum of CK, A1 and A3, with relative abundances of 71.28%, 68.74% and 51.79%, respectively. Basidiomycota was the dominant phylum of A2 with a relative abundance of 64.48%. At the genus level, compared with CK, the contents of Ceratobasidium, Mortierella, Piedraia and Saitozyma in A1 were significantly increased by 59.14, 1.34, 3.70 and 1.92 times, respectively (P<0.05). The relative abundance of Archaeorhizomyces in A2 decreased significantly by 76.81%, while that of Tomentella and Cladophialophora increased by 788.43 and 36.24 times, respectively (P<0.05). The Mortierella and Ganoderma in A3 soil significantly increased 1.09 and 0.81 times, respectively (P<0.05). In summary, the interplanting Ganoderma lucidum in tea gardens can effectively regulate the composition and structure of tea rhizosphere soil fungal community, improve the soil micro-ecological environment and this study provided a theoretical basis for the technical model to promote the sustainable green development of tea plantation.
    Reference | Related Articles | Metrics
    Regulatory Effect and Mechanism of EGCG on Metabolic Disorders in High-fructose Diet Mice
    ZHOU Jihong, CHEN Wei, DING Lejia, WANG Yuefei
    Journal of Tea Science    2023, 43 (3): 399-410.   DOI: 10.13305/j.cnki.jts.2023.03.012
    Abstract378)      PDF(pc) (3419KB)(2098)       Save
    This study investigated the effects and mechanisms of epigallocatechin gallate (EGCG) on high-fructose diet-induced metabolic disorders. Fifteen male SPF C57BL/6 mice were randomly divided into three groups: normal diet group (NCD), high-fructose diet group (HFD), and high-fructose diet supplemented with 1% EGCG group (HFE), with 5 mice in each group. After 8 weeks of feeding, the body weight, energy utilization rate, ALT and AST levels, as well as tissue morphology staining of the mice were measured. Furthermore, hepatic TNF-α, IL-1β, IL-6 and intestinal IL-6 inflammatory cytokine levels were detected by ELISA. The expressions of Srebp-1c, Tlr4, Myd88 in liver and Zo-1, Occludin, Tlr4 and Myd88 in intestine were measured by quantitative real-time PCR. Protein expressions of ZO-1 and Occludin were detected by IHC. The results show that dietary supplementation of EGCG could effectively reduce high-fructose diet-induced body weight gain, fat accumulation, hepatic and intestinal inflammatory responses, and could improve the intestinal barrier function by upregulating the expression of Zo-1 and the protein expressions of ZO-1 and Occludin. It also modulated lipid metabolism by reducing the expression level of Srebp-1c in liver, and downregulated the expression levels of inflammatory-related genes (Tlr4 and Myd88) in colon and liver. The results above suggest that dietary supplementation of EGCG has a preventive effect on high-fructose diet-induced metabolic disorders and inflammatory responses, and its mechanism may be related to the regulation of the gut-liver axis mediated by the TLR4/MyD88 signaling pathway.
    Reference | Related Articles | Metrics
    QTL Mapping and Candidate Gene Analysis for Timing of Spring Bud Flush in Tea Plants (Camellia sinensis)
    WANG Liubin, WU Liyun, WEI Kang, WANG Liyuan
    Journal of Tea Science    2023, 43 (6): 747-756.   DOI: 10.13305/j.cnki.jts.2023.06.012
    Abstract413)      PDF(pc) (1696KB)(1506)       Save
    The timing of spring bud flush (TBF) is an important agronomic trait of tea plants, which has great effects on the flavor quality and economic benefits of tea. In this study, to discover key candidate genes regulating TBF, a F1 population of ‘Longjing 43’× ‘Baihaozao’ comprising 327 offspring was used and a two years’ investigation of TBF were performed in the tea garden. Based on the high-density genetic map constructed from the F1 population, QTL mapping for the sprouting index (SPI) of tea plants was performed using MapQTL 6.0 and GACD 1.2 software. The phenotypes of SPI in 2022 and 2023 show significant trait segregation and exhibit obvious quantitative trait characteristics in the progeny population. MapQTL 6.0 was identified as a primary QTL (qSPI-5-1), which explained 18.30% (2022) and 7.60% (2023) of phenotypic variations, respectively. GACD1.2 software identified two stable QTLs (qSPI-1, qSPI-5-2), which explained 2.75%-18.40% of phenotypic variations. While qSPI-5-2 and qSPI-5-1 were largely overlapped. The confidence intervals of the above QTLs were compared to the reference genome of tea plants, and 23 candidate genes related to the TBF were found by function annotation analysis. These results provided theoretical references for further investigation on the regulatory genes and molecular mechanisms of spring bud flushing in tea plants.
    Reference | Related Articles | Metrics
    Study on Characteristic Flavor Substances in Tea Aroma Type Distilled Spirit Based on GC-MS and GC-O
    HUANG Cui, WANG Fengli, CHEN Yaolin, YU Jiajun, WANG Wei, DU Sufeng, SONG Tao, CAI Zhongshui, XUE Jie, WU Yun
    Journal of Tea Science    2023, 43 (5): 703-717.   DOI: 10.13305/j.cnki.jts.2023.05.002
    Abstract423)      PDF(pc) (880KB)(1304)       Save
    As a further extension of the deep processing technology of tea raw materials, tea aroma type distilled spirit combines the aroma of tea and wine, and has a unique flavor. In order to clarify the changes of flavor substances of tea aroma type distilled spirit under different processes, solid-phase microextraction/gas chromatography-mass spectrometry was used to analyze the flavor components. The odor specific magnitude estimation method and Odor activity value method in liquid-liquid extraction/gas chromatography-olfactometry-mass spectrometry were used to determine the characteristic flavor substances and their contribution to the overall flavor. The results show that 76 kinds of aroma substances were detected, including 32 esters, 14 alcohols, 10 aldehydes and ketones, 4 acids, 13 terpenes and 3 other substances. Gas chromatography-olfactometry mass spectrometry analysis results show that there were 21 aroma compounds that could be smelled, and 12 key aroma compounds were identified by OAV and OSME together, including linalool (rose flowers), anisole (herbal), ethyl caprate (fruit), ethyl caproate (wine aroma) and so on. The results show that different kinds of microorganisms, fermentation methods and distillation technology significantly affected the composition and contents of flavor substances in tea aroma type distilled spirit. The results of this study have important guiding significance for the characteristic aroma characterization and quality control of tea aroma type distilled spirit.
    Reference | Related Articles | Metrics
    Analysis of Codon Usage Bias and Phylogenesis in the Chloroplast Genome of Ancient Tea Tree Camellia taliensis in Forest-tea Garden
    TONG Yan, HUANG Hui, WANG Yuhua
    Journal of Tea Science    2023, 43 (3): 297-309.   DOI: 10.13305/j.cnki.jts.2023.03.010
    Abstract417)      PDF(pc) (571KB)(1159)       Save
    Camellia taliensis is one of the important tea plants which is often grown in forest-tea gardens, which participated in the origin and domestication of C. sinensis var. assamica. To determine the codon usage bias pattern and its main influencing factors in the chloroplast genome of C. taliensis, neutral plotting, ENC-plot, PR2-plot analyses were performed and the optimal codons were found. The results show that the GC content of 54 CDS sequences was 37.68%, while GC1 and GC2 content were 46.44% and 39.77%, higher than GC3 (27.67%), indicating that the third base of the codon preferred to end in A/U. The effective codon number (ENC) ranged from 35.64 to 56.67 , with an average value of 46.1, demonstrating weak codon usage bias in chloroplast genome of C. taliensis. Neutral plotting, ENC-plot, PR2-plot analyses show that the main factor affecting the codon usage bias of the C. taliensis chloroplast genome was natural selection. In total, 11 optimal codons were identified in the chloroplast genome of C. taliensis. Although phylogenetic trees constructed by matK gene and CDS sequence display different topological structures, all trees show that C. taliensis and C. gymnogyna are clustered into one branch and are closely related to cultivated tea plant. This study provided the basis for analyses of genetic evolution, phylogeny and improved agronomic traits of C. taliensis.
    Reference | Related Articles | Metrics
    Analysis of Aroma Characteristics and Volatile Components of Zhenghe White Tea with Different Storage Years
    HUANG Wei, ZHANG Lingzhi, ZHANG Jialin, LIN Fuming, RONG Jiefeng, XIAO Chunyan, YUE Penghang, YU Huazhu, SUN Weijiang, HUANG Yan
    Journal of Tea Science    2023, 43 (5): 667-680.   DOI: 10.13305/j.cnki.jts.2023.05.006
    Abstract620)      PDF(pc) (1492KB)(1148)       Save
    In order to investigate the aroma characteristics of Zhenghe white tea with different storage years, quantitative descriptive analysis (QDA) combined with headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to analyze the aroma characteristics and volatile components of Zhenghe white peony tea stored for 0, 5, 10 and 15 years. The results show that the aroma characteristics of Zhenghe white peony tea varied significantly among different storage years. The aroma characteristics of BMD0 were mainly pekoe, fresh, sweet and floral. With the extension of storage time, the pekoe, fresh, sweet and floral weakened, while the stale flavour and woody increased. A total of 66 volatile components were detected in Zhenghe white peony tea with different storage years, mainly alcohols, esters and acids, with the highest alcohol content in BMD0 and BMD5, and the highest ester content in BMD10 and BMD15. With the extension of storage time, the total volatile components decreased significantly, and the composition and proportion of relative contents changed significantly. The Orthogonal partial least-squares discrimination analysis (OPLS-DA) model could effectively discriminate Zhenghe white peony tea with different storage years. A total of 14 volatile components were screened based on relative odor activity value (rOAV)>1, while 30 volatile components were screened based on variable importance for the projection (VIP)>1. Based on rOAV value>1 and VIP value>1, 6 major volatile components were screened, including β-ionone, α-ionone, nerolidol, benzyl alcohol, benzeneacetaldehyde, linolenic acid. This study provided a theoretical reference and basis for the scientific storage of white tea and the flavour analysis of aged white tea.
    Reference | Related Articles | Metrics
    Research Progress on Colored Substances in Tea
    LONG Piaopiao, SU Shengxiao, ZHANG Liang
    Journal of Tea Science    2023, 43 (5): 593-606.   DOI: 10.13305/j.cnki.jts.2023.05.010
    Abstract835)      PDF(pc) (733KB)(1148)       Save
    The color of tea leaves and infusions is an important attribute to tea flavor and quality. Colored substances contain chromophore and auxochrome groups, which contribute to producing different shades of green, yellow, and red hue in tea infusion. As the concentrations of colored substances increase, the tea infusions’ color will increase accordingly, presenting different colors such as yellowish-green, reddish-yellow and reddish-brown. Furthermore, fermentation (enzymatic oxidation) and drying stages during processing, as well as temperature, pH, and concentration in sensory evaluation, affect the color and brightness of tea infusions. This review revealed the color formation mechanisms by summarizing the chemical structures, color characteristics, coloration mechanisms and other factors of color substances in tea. It also provided a theoretical evidence for the quality improvement of tea flavor and the innovation of processing technology.
    Reference | Related Articles | Metrics
    Diversity Analysis of Leaf Phenotype and Biochemical Components in Tea Local Population Resources
    TANG Lu, LI Changle, GE Yue, WANG Pu, ZHAO Hua, WANG Mingle, WANG Yu, GUO Fei, NI Dejiang
    Journal of Tea Science    2023, 43 (4): 473-488.   DOI: 10.13305/j.cnki.jts.2023.04.008
    Abstract520)      PDF(pc) (528KB)(1081)       Save
    In order to protect tea germplasm resources and promote tea germplasm innovation, the phenotypic character and biochemical component diversity of 32 tea germplasm resources from 12 provinces were studied. The results showed that the genetic diversity index of 16 phenotypic character ranged from 0.81 to 1.94, and the phenotypic genetic diversity of the test population was high. The cumulative contribution rate of the six phenotypic characters including leaf area, leaf shape, leaf upper surface, young shoot pubescence, leaf tip shape and leaf cross section were 71.78%, which was the main factor causing the phenotypic difference of the tested tea population. Based on the determination results of biochemical components in two years, the variation coefficient of caffeine content (17.95% and 14.55%) was the largest, followed by the variation coefficient of tea polyphenol content (13.61% and 8.11%). The variation coefficient of free amino acid (5.62% and 7.52%) was the lowest. Cluster analysis based on the results of biochemical component content determination was conducted to divide the tested tea tree populations into three groups, each including different types of germplasm. From the geographical distribution of the tested tea populations, the content of biochemical components showed regional differences.
    Reference | Related Articles | Metrics
    Construction of Flavor Wheel and Quantitative Sensory Description Analysis of Pu'er Tea and Fu Brick Tea
    CHEN Guohe, HU Tengfei, XIE He, FU Wenjie, ZHAI Yuke, BAO Sudou, AN Qin, WANG Chao, WANG Yingzi, LIU Zhonghua, HUANG Jian'an
    Journal of Tea Science    2023, 43 (5): 631-644.   DOI: 10.13305/j.cnki.jts.2023.05.008
    Abstract523)      PDF(pc) (1988KB)(1049)       Save
    Flavor wheel is a simple and easy method to understand descriptor system, which is convenient for consumers to communicate the sensory flavor attributes of Pu'er tea and Fu brick tea. In this study, by establishing a sensory evaluation team, sensory evaluation was conducted on the flavor of Pu'er tea and Fu brick tea, and the flavor wheels of Pu'er tea and Fu brick tea were drawn from two dimensions: aroma and taste. On this basis, a vocabulary for quantitative sensory description of Pu'er tea and Fu brick tea was established by setting reference samples with different intensities for 23 typical sensory descriptions. Furthermore, using the M-value method combined with analysis of variance and multivariate statistical analysis, the main sensory descriptors that can better describe Pu'er tea and Fu brick tea were selected. A total of 7 aroma descriptors (woody, sweet aroma, herbal, ferment, glutinous, jujube and aged) and 5 flavor descriptors (sweet taste, bitter, astringent, sour and mellow and thick) were selected for Pu'er tea, and 5 aroma descriptors (woody, sweet aroma, herbal, aged and fungal floral) and 5 flavor descriptors (sweet taste, bitter, astringent, sour and mellow and thick) were identified for Fu brick tea, and these descriptors can better evaluate the sensory quality characteristics of Pu'er tea and Fu brick tea samples. The results of this study provide application value for distinguishing and evaluating the sensory flavor characteristics of Pu'er tea and Fu brick tea, as well as in the development of their products.
    Reference | Related Articles | Metrics
    Advances in the Application of Metabolomics in the Study of Physiological and Biochemical Metabolism of Tea Plants [Camellia sinensis (L.) O. Kuntze]
    MAO Chun, HE Ji, WEN Xuefeng, WU Chuanmei, YI Chengxi, LIAN Jianhong, GUO Wenmin
    Journal of Tea Science    2023, 43 (5): 607-620.   DOI: 10.13305/j.cnki.jts.2023.05.009
    Abstract831)      PDF(pc) (477KB)(817)       Save
    Tea is a leafy perennial crop, and its physiological metabolism is significantly affected by external environmental factors. Main biochemical components such as amino acids, caffeine and tea polyphenols not only give tea unique flavor quality and health characteristics, but also are important contributors to the resistance of tea plants to biotic and abiotic stresses. Metabolomics technologies have the characteristics of high throughput, high sensitivity and systematization. They can identify and quantify tea metabolites comprehensively, accurately and quickly. The in-depth study of metabolomics provides a technical platform for the further development and utilization of tea metabolites. This paper reviewed the applications of metabolomics in the study of physiological and biochemical metabolism (photosynthesis, respiration, carbon and nitrogen metabolism) and metabolism of main quality biochemical components (flavonoids, alkaloids, amino acids, etc.) of tea plants in recent years, and prospected the future applications of metabolomics in the field of tea, so as to provide some theoretical references for further tea management, cultivar breeding and quality improvement.
    Reference | Related Articles | Metrics
    Construction of Polyphenol Self-assembly Antibacterial Biomaterials and Progress in Their Applications
    XU Wei, YU Rongxin, ZHANG Xiangchun, ZHANG Yiwen, CHEN Hongping, TIAN Baoming, ZHENG Qinqin, WU Yuanyuan, XIA Chen, WEI Bing
    Journal of Tea Science    2024, 44 (1): 1-15.   DOI: 10.13305/j.cnki.jts.2024.01.004
    Abstract736)      PDF(pc) (4782KB)(816)       Save
    Bacterial infection, a leading cause of global mortality, can result in various diseases. While antibiotics are the primary treatment for infections, their excessive and irrational use has led to the emergence of a variety of bacterial drug resistance, posing a serious threat to human health. Plant polyphenols have natural antibacterial properties, but the instability of the phenolic hydroxyl structure limits their bioavailability. To solve this problem, researchers have explored the self-assembly of polyphenols with other substances to construct new nano-biomaterials. These biomaterials not only enhance the stability and bioavailability of polyphenols but also exhibit synergistic antibacterial activity, showing a great promise in the field of antibacterial applications. This review examined the construction strategies and antibacterial properties of different types of polyphenol self-assembled biomaterials developed in recent years, including polyphenol-metal, polyphenol-hydrogel, polyphenol-chitosan, polyphenol-protein and polyphenol-liposome. Furthermore, the challenges and future prospects of the novel polyphenol self-assembling biomaterials in the field of antibacterial application were discussed.
    Reference | Related Articles | Metrics
    Data Enhancement Optimization and Class Activation Mapping Quantitative Evaluation for CNN Image Recognition of Multiple Tea Categories
    ZHANG Zhanyi, ZHANG Baoquan, WANG Zhouli, YANG Yao, FAN Dongmei, HE Weizhong, MA Junhui, LIN Jie
    Journal of Tea Science    2023, 43 (3): 411-423.   DOI: 10.13305/j.cnki.jts.2023.03.006
    Abstract439)      PDF(pc) (1936KB)(789)       Save
    There are many kinds of tea in China, and subjective identification is easy to be confused and very dependent on professional experience. Convolutional Neural Network (CNN) image recognition applied to multi-tea identification has the advantages of objectivity, adaptability to complex image backgrounds and portability to mobile devices. However, the current CNN image recognition of tea lacks data enhancement optimization and objective evaluation of recognition accuracy, which limits the robustness and generalization ability of model recognition. In this study, a total of 6 123 images of 29 common tea categories were collected to construct a dataset, and the ResNet-18 (Residual network-18) training effects of 10 image data enhancement methods were compared. To objectively evaluate the accuracy of the model recognition area, two gradient-weighted class activation mapping (Grad-CAM ) quantitative evaluation indexes (IOB and MPI) were constructed. The results show that grid erasure (Ratio=0.3), resolution perturbation and HSV (Hue, Saturation, Value) color space perturbation are better data enhancement methods, with four indicators of accuracy, loss, IOB and MPI performing better. Furthermore, through the ablation experiment, the optimal combination of data enhancement methods “horizontal mirror flip + grid erasure (Ratio=0.3) + HSV color perturbation” was obtained. The accuracy rate of model test reached 99.82%, with a loss value of only 0.64, and the IOB and MPI indicators also performed better, reflecting good accuracy in image recognition. This study optimized the tea image data enhancement method, and obtained the multi-tea CNN image recognition model with high robustness. The constructed quantization indexes IOB and MPI also solved the problem of accuracy evaluation of CAM recognition region.
    Reference | Related Articles | Metrics
    Geochemical Characteristics and Risk Assessment of Heavy Metals in Typical Tea Gardens in Yunnan Province
    XIE Mengli, CHANG He, ZHOU Xiaohua, YANG Tianfu, LONG Kun
    Journal of Tea Science    2023, 43 (4): 501-512.   DOI: 10.13305/j.cnki.jts.2023.04.004
    Abstract384)      PDF(pc) (963KB)(782)       Save
    In order to explore the relationship and the current situation between the geological background of tea garden and the content of heavy metal elements in tea, the rocks, soil and tea in Mengku tea garden and Jingmai tea garden in Yunnan Province were selected as the research objects. The contents of 10 heavy metal elements (Cd, Co, Cr, Cu, Hg, Ni, Pb, Zn, Mn, As) were determined. Multivariate statistical analysis and spatial analysis were used to summarize the characteristics and risk assessment of heavy metals in tea gardens. The results show that: (1) compared with the abundance of elements in the crust, the rocks in Mengku and Jingmai tea gardens were rich in As. While the rocks of Mengku tea garden were poor in Hg and the rocks of Jingmai tea garden were poor in Mn. (2) The soil of Mengku tea garden was mainly polluted by As and Cr. The soil of Jingmai tea garden was mainly polluted by Cr and Cu. They were all lightly polluted and had good soil quality. (3) The average contents of heavy metal elements in tea followed the order of Mn>Zn>Cu>Ni>Cr. The accumulation ability followed the order of Mn>Zn>Hg>Cu>Ni. Only a few tea samples from Mengku tea garden had As content exceeding the standard. And the heavy metal contents in tea were generally at the safe level. (4) For tea samples from Mengku and Jingmai tea gardens, Mn had the highest non-carcinogenic risk. As in Mengku tea had the highest carcinogenic risk. Cr in Jingmai tea had the highest carcinogenic risk. And other heavy metal elements were within the safe range.
    Reference | Related Articles | Metrics
    Effects of Growth and Development on the Visual Ability of Empoasca onukii
    TAN Chang, SHAN Yao, ZHOU Xiaosen, YAO Qiuyi, CAI Xiaoming, BIAN Lei
    Journal of Tea Science    2023, 43 (3): 367-376.   DOI: 10.13305/j.cnki.jts.2023.03.004
    Abstract370)      PDF(pc) (1304KB)(777)       Save
    Allometry is an important strategy for insects to adapt to the surrounding environment. Visual cues are the key information for host selection and flight movement of Empoasca onukii. With the growth and development of E. onukii, the size and mobility of the leafhopper gradually increase, and the morphology of the compound eye also changes significantly. In this study, histological and behavioral methods were used to determine the morphological structure and visual ability of the compound eye of E. onukii at different ages. The results show that the visual ability gradually increased during the growth and development process of E. onukii. From 1st instar to 5th instar, the optical sensitivity of the nymph increased from 0.04 μm2·sr to 0.11 μm2·sr, and the visual acuity increased from 0.086 cycles per degree (cpd) to 0.112 cpd. Both of optical sensitivity and visual acuity were consistent with the allometric growth, but their growth rates were slower than that of the size of nymphs. After the emergence of nymphs, the optical sensitivity of the center region of the compound eye decreased and there was a significant difference between the male and the female. Although the visual acuity kept increasing, the compound eye of E. onukii was still a low-resolution organ with limited effective visual distance. This study confirms that E. onukii slows down the growth rate of visual ability to prioritize the development of body size and motion-related organs, and focuses on the increase of visual field to facilitate to perceive visual cues in a wide range.
    Reference | Related Articles | Metrics
    Historical Changes and Influencing Factors of Tea Producing Areas in the Yangtze River Basin
    DU Xiya, LIU Xinqiu, LU Yong
    Journal of Tea Science    2024, 44 (4): 694-706.   DOI: 10.13305/j.cnki.jts.2024.04.012
    Abstract279)      PDF(pc) (693KB)(755)       Save
    The production, trade and the dissemination of tea culture in ancient China were mainly centered around the Yangtze River Basin. Research on the distribution of tea planting areas in the Yangtze River Basin and their influencing factors provides a crucial perspective for a thorough understanding of the historical and geographical development of tea. Based on the combing of ancient books, especially local records, combined with the research of modern scholars on tea producing areas in historical periods, this paper sorted out the historical evolution process of tea producing areas in the Yangtze River basin in detail. The study categorized these shifts into four stages and utilized ArcGIS technology to create distribution maps of tea-producing areas during each stage. The paper summarized the characteristics and patterns of tea-producing areas in the Yangtze River Basin, attempting to analyze prominent factors influencing the distribution of tea-producing areas in each stage. It reveals key features of the historical and geographical development of tea, providing valuable insights for a deeper understanding of tea production and the dissemination of tea culture in China.
    Reference | Related Articles | Metrics
    Ecological Thoughts in Ancient Chinese Tea Books and Their Contemporary Value
    LIU Xinqiu, DU Xiya
    Journal of Tea Science    2023, 43 (3): 437-446.   DOI: 10.13305/j.cnki.jts.2023.03.013
    Abstract444)      PDF(pc) (362KB)(751)       Save
    Chinese traditional ecological thoughts with the core of Confucianism, Buddhism, Taoism culture, in the pursuit of harmony in the process of human and nature, are consisted of a series of environmental protection and respect for life. It is formed by the particular geographical environment, political status, economic conditions and cultural factors, which thereby formed an agriculture production system of intensive cultivation. Under the influence of the ecological thoughts, a special system of tea planting management and tea drinking methods has been established in the production and development of tea industry, which was mostly recorded in the tea books of all dynasties. The ecological thoughts of tea industry were embodied in different periods, including the historical understanding of tea planting ecological environment, the development and evolution of tea garden management technologies and the stage change of tea drinking mode. The ecological concept of ancient tea industry has been inherited and can still be used for reference and implementation today.
    Reference | Related Articles | Metrics
    Changes of Endogenous Hormone Contents and Expression Analysis of Related Genes in Leaves of Tea Plants Under Heat and Drought Stresses
    TANG Ziyi, DU Yue, YANG Hongbin, LI Xinghui, YU Youben, WANG Weidong
    Journal of Tea Science    2023, 43 (4): 489-500.   DOI: 10.13305/j.cnki.jts.2023.04.006
    Abstract528)      PDF(pc) (1970KB)(727)       Save
    Extreme environments, such as heat and drought, seriously affect the growth and development of tea plants and the quality of tea production. Hormones are important signaling factors, but the molecular mechanisms of hormones involved in the response of tea plants to heat and drought stresses are rarely reported. In this study, we systematically analyzed the changes in endogenous hormone contents and the expression levels of related genes in leaves of tea plants under heat and drought stresses. The results show that the contents of IAA and GA3 were significantly reduced and the contents of ZR were slightly increased in leaves of tea plants under heat and drought stresses, which were presumably used to delay the growth of tea plants to adapt to the environment stresses. Meanwhile, many genes related to biosynthesis and signal response of IAA, GA3 and ZR were significantly differentially expressed, which provided a molecular basis for explaining the hormone content changes and signal transduction. In addition, the contents of ABA and JA increased significantly under both heat and drought stresses, which may depend on the up-regulated expressions of ABA biosynthetic pathway genes such as ZEP, NCED, SDR and JA biosynthetic pathway genes such as LOX, OPR, ACX. Furthermore, many ABA signal responsive genes such as PYR/PYL, PP2C and JA signal responsive genes such as JAZ, MYC2 were also significantly differentially expressed, suggesting the important role of ABA and JA signaling pathways in the response of tea plants to heat and drought stresses. These results provided theoretical references for further exploring the molecular mechanisms of tea plants response to heat and drought stresses, which rely on endogenous hormones.
    Reference | Related Articles | Metrics
    Present Status and Development Trends of Research on Tea Polysaccharides
    LI Yan, LIN Yongfeng, LIU Wenmei, ZOU Zehua, LIU Guangming, LIU Qingmei
    Journal of Tea Science    2023, 43 (4): 447-459.   DOI: 10.13305/j.cnki.jts.2023.04.001
    Abstract699)      PDF(pc) (475KB)(675)       Save
    Tea polysaccharides are important active ingredients in tea. Studying the properties of tea polysaccharides and promoting the development of tea polysaccharides products will benefit both the tea industry and the health industry. In the present paper, literatures related to tea polysaccharides from the Web of Science database over the past decade were visually analyzed. The results show that the overall number of papers related to tea polysaccharides showed an increasing trend from 2013 to 2022. The co-occurrence, emergence and frequency analysis of keywords show that the antioxidant activities of tea polysaccharides are a continuous research hotspot, which may also be one of the main trends in future research. At present, global research on tea polysaccharides mainly focuses on the physicochemical properties including monosaccharide composition, solubility, emulsification and biological activities such as antioxidation, anticancer and antidiabetic. Although tea polysaccharides exhibit a variety of biological activities, the underlying mechanisms are still not well understood. Recent studies have shown that tea polysaccharides can exert probiotic potential by affecting gut microbiota. In addition, the transformation and development of tea polysaccharide-related products are particularly insufficient. In the future, researchers can focus on developing biofilm products, drug delivery vehicles and functional foods using tea polysaccharides. Overall, the present paper summarized the main contents and hot spots in the field of tea polysaccharides, aiming to serve as a reference for researchers in this field as well as for the development of the tea polysaccharide industry.
    Reference | Related Articles | Metrics
    The Effect of Organic Management on Soil pH in Tea Gardens
    SHEN Xingrong, WANG Qiuhong, HU Qiang, WANG Donghui, FU Shangwen, HAN Wenyan, LI Xin
    Journal of Tea Science    2024, 44 (2): 261-268.   DOI: 10.13305/j.cnki.jts.2024.02.011
    Abstract330)      PDF(pc) (311KB)(633)       Save
    Soil excessive acidification is one of the main problems affecting the sustainable and healthy development of tea industry. To understand the long-term impact of organic management on soil pH of tea gardens, this study selected both soil samples from organic and conventional tea gardens in 84 tea producing counties of 18 provinces in China. The organic tea garden was managed organically from 1 to 21 years. The results show that the mean soil pH in organic tea gardens was significantly increased by 0.36, compared to the conventional tea gardens. With the increase of the years under organic management, the overall pH of tea garden soil shows a significant rise, and then a stable trend. The soil pH under organic management for 1-5, 6-10, 11-15 and 16-21 a significantly increased by 0.48, 0.23, 0.28 and 0.30, respectively compared to those in conventional tea gardens. The organic management also helped the soil pH towards the direction for most suitable growth and development of tea plants, the proportion of soils with pH 4.5-5.5 was only 41.9% in conventional tea gardens, it was increased to 53.1%、48.9%、58.7% and 66.7% in tea gardens under organic management for 1-5, 6-10, 11-15 and 16-21 a, respectively. These results indicate that organic management could not only overcome soil over acidification, but towards to the direction of the most suitable soil pH for the growth and development of tea plants.
    Reference | Related Articles | Metrics
    Effects of Foliar Application of Different Concentrations of Organic-based Biostimulant Formulas on Yield and Quality of Tea (Camellia sinensis L.) in Red Soil Regions
    WANG Limin, CHEN Shiping, HUANG Dongfeng
    Journal of Tea Science    2024, 44 (1): 53-61.   DOI: 10.13305/j.cnki.jts.2024.01.007
    Abstract389)      PDF(pc) (903KB)(603)       Save
    The purpose of this study was to evaluate the effect of different concentrations of organic-based biostimulant formulas (OBFs) on the yield and quality of tea (Camellia sinensis L.) in red soil regions. A field experiment was therefore conducted to investigate the nutrient uptake, yield, and quality of tea under different fertilization treatments. On the basis of conventional fertilization, foliar applications with the volume percentage concentration of OBFs including 0 (T0), 0.33% (T1), 0.66% (T2), 0.99% (T3), 1.32% (T4), and 1.65% (T5) were set up. The results show that foliar application of OBFs improved agronomic characteristics, enhanced nutrient uptake of tea plants and improved the tea yield and quality. Compared with the T0 treatment, tea yield in the T1, T2, T3, T4 and T5 treatments increased by 1.4, 1.4, 1.3, 2.1 and 2.4 times, respectively (P<0.05). In addition, as the concentrations of OBFs increased, the contents of total alkaloid, caffeine, and amino acids were first increased and then decreased. The contents of total alkaloid in the T1 and T2 treatments increased by 9.6% and 9.3%, caffeine increased by 9.3% and 11.4%, and amino acids increased by 5.0% and 12.4% in comparison with the T0 treatment, respectively (P<0.05). Meanwhile, under T1 and T2 treatments, nitrogen (N) uptake of tea leaves increased by 5.5% and 6.1%, phosphorus (P) increased by 19.9% and 13.3% and potassium (K) increased by 20.9% and 10.0%, respectively (P<0.05). Under T1 treatment, silicon (Si) increased by 14.8%. Furthermore, tea yield was positively correlated with bud density, 100-bud weight, leaf area and chlorophyll content. Meanwhile, the contents of total alkaloid and caffeine were positively related to N, P, K and Si contents in tea leaves, respectively. Similarly, there was a significant and positive relationship between N, P and K contents in tea leaves and the contents of amino acids and essential amino acids. Overall, foliar application with 1.65% OBFs could increase tea yield, while foliar application with 0.33% and 0.66% OBFs could promote N, P, K and Si uptake in tea leaves, improve agronomic characteristics, which is beneficial for tea yield and quality.
    Reference | Related Articles | Metrics
    Research on the Effect Evaluation and Dynamic Mechanism of the Integrated Development of Tea and Tourism Industry
    LIN Xi, WU Qinyao, YANG Jiangfan
    Journal of Tea Science    2023, 43 (5): 718-732.   DOI: 10.13305/j.cnki.jts.2023.05.011
    Abstract512)      PDF(pc) (624KB)(566)       Save
    This study was based on the theories of industry integration, industry chain value, and coupling coordination, as well as previous research results. Taking the development level of the tea industry and tourism industry in the eight main tea-producing areas in China from 2011 to 2020 as the empirical research object, a quality evaluation index system for the development of the tea and tourism industry was constructed, and the coupling coordination model and spatial analysis method were used to evaluate and present the effect of tea tourism integration. And regression models were used to explore the driving mechanism of tea tourism integration development. The results indicate that the tea and tourism industries in the main tea-producing areas over the past decade were highly coupled, which were present in the middle to late stages of integrated development. The overall trend shows a spatial feature of "high in the middle and low on both sides", with an inverted "U" shape in the east-west direction. The high value area at the provincial level has always been Yunnan Province. The driving force mechanism is the joint influence of internal and external factors: the internal driving force is the internal coupling between the tea and tourism industries, which drives the formation of a new business model: the integration of tea and tourism. In terms of external macro environment, policy guidance and support are the leading forces, sustained economic development is the driving force, social and cultural prosperity is the pulling force, and technological innovation and application are the supporting forces. Suggestions were also made on further promoting the integrated development of tea tourism consisting of strengthening government guidance and support to improve factor protection, promoting the improvement of industry quality and efficiency to consolidate the foundation of development, digging and highlighting cultural connotations to expand the depth of development, applying technology to cultivate talents and thus strengthen development support.
    Reference | Related Articles | Metrics
    Study on the Regulation Roles of Plant Hormones on the Growth and Development of Tea Shoots in Spring
    LI Congcong, WANG Haoqian, YE Yufan, CHEN Yao, REN Hengze, LI Yuteng, HAO Xinyuan, WANG Xinchao, CAO Hongli, YUE Chuan
    Journal of Tea Science    2023, 43 (3): 335-348.   DOI: 10.13305/j.cnki.jts.2023.03.002
    Abstract405)      PDF(pc) (1612KB)(564)       Save
    Hormones play important roles in the regulation of plant growth and development. In order to clarify the effects of different hormones on the growth and development of tea shoots in spring, and to identify the main pathways and key genes involved, tea cultivar ‘Longjing 43’ was used as the experimental materials, and treated with 100 μmol·L-1 ABA, 100 μmol·L-1 GA3 and 100 μmol·L-1 IAA respectively in the sprouting period. The phenotypic characteristics of buds were determined, and the buds at the 7th day after treatments were investigated using RNA-Seq technique. The results show that exogenous ABA treatment inhibited the germination and growth of shoots, and the length of shoots was significantly shorter than the control after 7 days after treatment. On the other hand, GA3 and IAA treatments had a promoting effect, and the bud length was significantly extended on the 7th day after GA3 treatment and on the 14th day after IAA treatment. RNA-Seq analysis indicates differentially expressed genes were mainly enriched in amino acid biosynthesis pathway under ABA treatment, oxidative phosphorylation pathway and photosynthesis pathway under GA3 treatment, and flavonoid biosynthesis pathway under IAA treatment. GAI, PSBO2, PSBQ-2 and PSBP-1 related to plant hormone and photosynthesis pathways might be the key genes involved in shoot growth and development. The real-time fluorescence quantitative PCR results of some candidate genes were consistent with the RNA-Seq results. The above studies identified the main pathways and key genes involved in the hormone regulation on tea shoot growth and development, which provided a theoretical basis for deeply revealing the regulation mechanism of tea shoot growth and development.
    Reference | Related Articles | Metrics
    Study on the Influence of Tea Green Leafhopper Infestation on the Tenderness of Fresh Tea Leaves and the Extraction Rate of Metabolites Related to Oolong Tea Quality
    WU Shuhua, MAO Kaiquan, CHEN Jiaming, LI Jianlong, XUE Jinghua, ZENG Lanting, YANG Yuhua, GU Dachuan
    Journal of Tea Science    2023, 43 (6): 806-822.   DOI: 10.13305/j.cnki.jts.2023.06.005
    Abstract573)      PDF(pc) (4187KB)(556)       Save
    Tea green leafhopper is a major insect widely distributed in tea gardens, which has a significant impact on the yield and quality of tea. However, the effects of tea green leafhopper infestation on the tenderness of fresh tea leaves and the extraction rate of metabolites related to oolong tea quality remain unclear. By means of shear force measurement, broken tea rate analysis, oolong tea brewing, metabolite analysis and correlation analysis, it was found that the infestation of tea green leafhoppers significantly increased the contents of cell wall materials lignin, cellulose and pectin, and decreased the tenderness of fresh tea leaves and broken tea rate. The extraction rates of tea polyphenols, free amino acids, soluble sugars, catechin monomers, amino acid monomers and theanine were affected. Moreover, except for epicatechin gallate (ECG), the extraction of these taste substances and the tenderness of fresh tea leaves were significantly correlated with the contents of cell wall materials. In this study, the extraction rule of taste quality metabolites after tea green leafhoppers infestation was explored, and the influence of tea green leafhopper infestation on quality traits was explored from three aspects: tea picking, processing and brewing.
    Reference | Related Articles | Metrics
    Seasonal Dynamic Characteristics of Soil Physical and Chemical Properties and Enzyme Activities of Different Planting Patterns in the Wuyishan
    WANG Feng, CHANG Yunni, SUN Jun, WU Zhidan, CHEN Yuzhen, JIANG Fuying, YU Wenquan
    Journal of Tea Science    2024, 44 (2): 231-245.   DOI: 10.13305/j.cnki.jts.2024.02.004
    Abstract405)      PDF(pc) (1416KB)(548)       Save
    Tea (Camellia sinensis L.) is one of the most important and traditional economic crops widely cultivated in the subtropical regions of China, which are usually developed from forestland. Soil enzyme activity is an important indicator of soil fertility and nutrient transformation. The purpose of this study is to investigate the seasonal dynamic characteristics of soil properties and enzyme activities of different planting patterns in Wuyishan city, and to provide theoretical basis for reasonable evaluation of soil ecological effects of organic tea cultivation. In this paper, three different planting patterns (forestland, conventional and organic tea gardens) were selected as the research objects. Soil samples were collected in May, August, November and February from 2021 to 2022. The soil properties and enzyme activities (urease, nitrate reductase, polyphenol oxidase, catalase, invertase and acid phosphatase) were determined in different seasons, and the dynamic changes with seasons were also investigated. The results show that: comparing with the forestland, the contents of soil ammonium nitrogen, total phosphorus, available phosphorus and available potassium increased significantly in the conventional tea garden, while the total potassium and pH decreased significantly. Compared with the conventional tea garden, the soil organic matter and total nitrogen contents increased significantly in the organic tea garden. The soil total phosphorus, available phosphorus, total potassium and available potassium contents decreased significantly. The soil pH also increased, and the proportion of soil nutrients was more coordinated. The effects of planting pattern and season and their interactions on urease and peroxidase activities were significant. Compared with the forestland, the soil urease, polyphenol oxidase, catalase and acid phosphatase activities decreased by 12.05% to 63.55% in the conventional tea garden, while urease activities significantly increased by 324.95% in the organic tea garden, and the soil nitrate reductase activities were not changed by planting mode. In general, the soil urease, polyphenol oxidase, invertase and acid phosphatase activities were significantly higher in summer and autumn (May and August) than those in winter and spring (November and February). The highest soil nitrate reductase and catalase activities were found in spring (February). The results of permutational multivariate analysis of variance show that the effect of planting pattern on the overall soil physical and chemical properties was much greater than that of seasonal changes. Redundancy analysis shows that soil environmental factors explained 77.03% of the variation in soil enzyme activity, and the soil organic matter, total nitrogen, ammonium nitrogen, total phosphorus, soil available phosphorus, total potassium, available potassium and pH were the main driving factors of soil enzymes. In summary, the conversion of forestland into tea gardens has a significant impact on soil properties and enzyme activities. Conventional planting leads to the accumulation of available phosphorus and potassium in tea garden soil and the decrease of soil enzyme activity, while organic planting improves soil enzyme activity and enhances soil carbon and nitrogen nutrient supply capacity, and thus is beneficial for maintaining a sustainable ecosystem in tea garden soil.
    Reference | Related Articles | Metrics
    Research Progress of Quantitative Evaluation Methods for Tea Grade
    ZOU Dan, YIN Xiaoli, GU Huiwen, LONG Wanjun, FU Haiyan, SHE Yuanbin
    Journal of Tea Science    2023, 43 (6): 733-746.   DOI: 10.13305/j.cnki.jts.2023.06.011
    Abstract532)      PDF(pc) (2029KB)(546)       Save
    Grade is an important indicator for discerning the quality of green tea and other types of tea, and it is directly related to their selling prices. However, there is often a phenomenon of falsely labeling tea grades in the market, which seriously undermines consumer rights. At present, tea grade is mainly assessed by sensory evaluation. Sensory evaluation, after long-term development, has formed relatively unified standard, but it still has a certain subjectivity. To evaluate the tea grade more accurately and objectively, researchers have developed a series of quantitative evaluation methods for tea grade. Given the significant practical importance of evaluating tea grade, this article provided a comprehensive review of the recent research status in the qualitative and quantitative evaluation of tea grades, including bionic sensing intelligent sensory detection technology, specific chemical components detection and metabolomics techniques. Major problems and challenges on tea grade evaluation were discussed, and future development trend was also prospected in this study. It has positive guiding significance for objective, scientific and standardized evaluation and quality control of tea quality.
    Reference | Related Articles | Metrics
    Parameter Optimization of Black Tea Fermentation Machine Based on EDEM and RSM
    LIU Limin, DONG Chunwang, LIN Shuhong, SHI Yali
    Journal of Tea Science    2023, 43 (5): 681-690.   DOI: 10.13305/j.cnki.jts.2023.05.004
    Abstract397)      PDF(pc) (2472KB)(534)       Save
    Fermentation is a key process for the formation of black tea quality, and the fermentation conditions are the important factors affecting the degree of fermentation. In order to optimize the parameters of a self-designed roller fermentation machine, the extended distinct element method (EDEM) was used to simulate three distinct gradients of the rotational speed of the flexible scraper, and compare the degree of uniformity. With sensory score as evaluation index, response surface method (RSM) was applied for optimizing three key factors affecting fermentation quality (fermentation temperature, fermentation time, stirring interval). The results indicate that the uniformity of fermentation was the best at a rotation speed of 36(°)·s-1. Based on this rotational speed, the order of importance of each factor on fermentation quality was: fermentation time, fermentation temperature, stirring interval. The optimal process parameters were as follows: fermentation time, 230βmin, fermentation temperature, 28.5β℃, and stirring interval, 20βmin.
    Reference | Related Articles | Metrics
    Catalytic Function, Promoter Structure and Functional Analysis of CsNUDX1-cyto in Different Tea Cultivars
    YANG Jihong, ZHOU Hanchen, XU Yujie
    Journal of Tea Science    2023, 43 (5): 621-630.   DOI: 10.13305/j.cnki.jts.2023.05.001
    Abstract428)      PDF(pc) (1842KB)(533)       Save
    Geraniol is an important monoterpenoid in tea plants, and its accumulation varies greatly among different tea cultivars. The recent study shows that CsNUDX1-cyto is responsible for the production of geraniol and its glycosides in tea plants. In order to explore the differences in the catalytic function and regulation of CsNUDX1-cyto in different tea cultivars, this study analyzed the differences in the accumulation of geraniol and expression patterns of CsNUDX1-cyto, and analyzed the differences in the catalytic function, promoter structure and function of CsNUDX1-cyto in seven tea cultivars. The result shows that CsNUDX1-cyto expression was positively correlated with geraniol content (r=0.805). The content of geranyl in fresh leaves of Camellia sinensis var. sinensis (CSS) was significantly higher than that in C. sinensis var. assamica (CSA) cultivars. Agrobacterium tumefaciens-mediated genetic transformation system shows that CsNUDX1-cyto of different tea cultivars could promote the biosynthesis of geraniol. Analysis of promoter activity shows that CsNUDX1-cyto promoter had the weakest activity in ‘Yunkang 10’, and the structural analysis shows that the promoter of CsNUDX1-cyto in ‘Yunkang 10’ had an 185 base sequence insertion at the transcription start site -33, making the enhancing element CAAT-box located at -133 (CAAT-boxes in other cultivars were located at -47). The results of this study indicate that CsNUDX1-cyto in different tea cultivars could promote geraniol biosynthesis, but the genetic diversity of the promoter region results in differences in its expression level.
    Reference | Related Articles | Metrics
    Effect of Jinhua White Tea on Weight Loss of High Fat Diet Mice
    LIU Zhenyun, KE Wanping, ZHOU Xirui, LI Menghua, BO Jiahui, YE Xingmei, LIU Zhonghua, XIAO Lizheng, LIN Yong
    Journal of Tea Science    2024, 44 (2): 350-362.   DOI: 10.13305/j.cnki.jts.2024.02.014
    Abstract284)      PDF(pc) (3081KB)(526)       Save
    The aim of this study was to investigate the effect of Jinhua white tea (JWT) on weight loss of high fat diet mice. In this study, JWT was selected as the material and compared with the white tea without fungal fermentation method. The determination of major chemical components in the tea was conducted. An obesity mouse model was established, and the mice were administered orally with 400 mg·kg-1 of JWT water extract as an intervention. The body weight of the mice was regularly recorded, and obesity-related indicators were measured, followed by histopathological analysis of the tissues. The results indicate that after fungal fermentation, the contents of flavonoids and theabrownin increased significantly, while the contents of tea polyphenols, free amino acids, soluble sugars, theaflavins and thearubigins decreased significantly. Meanwhile, among the catechin components, only epicatechin content increased significantly. JWT effectively inhibited the body weight gain in high fat diet mice, reduced their liver and white adipose tissue indices, alleviated inflammation and oxidative stress, and protected the structural integrity and function of the liver and intestines. Compared to white tea without fungal fermentation method, JWT significantly reduced the levels of TC, TG and inflammatory factors in mice, which were speculated to be related to the mass reproduction of Eurotium cristatum and the increase of flavonoids, epicatechin, theabrownin and other substances. While white tea shows a more pronounced effect on relieving liver oxidative stress, which was speculated to be due to the significant decrease in the content of epigallocatechin gallate after fungal fermentation. These findings suggest that JWT has a significant weight loss effect on mice with diet-induced obesity, while fungal fermentation method can improve the lipid-lowering and weight-reducing effects of white tea to a certain extent.
    Reference | Related Articles | Metrics
    Identification of CAB Gene Family and Excavation of Key Genes Related to Leaf Yellowing Variationin Tea Plants (Camellia sinensis)
    ZHONG Sitong, ZHANG Yazhen, YOU Xiaomei, CHEN Zhihui, KONG Xiangrui, LIN Zhenghe, WU Huini, JIN Shan, CHEN Changsong
    Journal of Tea Science    2024, 44 (2): 175-192.   DOI: 10.13305/j.cnki.jts.2024.02.007
    Abstract331)      PDF(pc) (2408KB)(521)       Save
    Members of the light-harvesting chlorophyll a/b binding protein (CAB) gene family play an important role in plant leaf yellowing variation. In this study, the CAB family members were identified from tea plant ‘Tieguanyin’ genomic data. The bioinformatics and expression patterns were analyzed. Furthermore, the expression patterns of the CABs gene were analyzed by gene cloning and qRT-PCR in tea cultivars with different leaf colors. The key CAB genes related to tea yellowing were screened by correlation analysis of leaf color parameters and chlorophyll SPAD values. The results show that 25 members of the CAB gene family were identified, their amino acid length ranged from 167-337 and the protein molecular weight ranged from 18.5-37.1 kDa. Most CAB members were stable and hydrophobic proteins, and distributed in chloroplast by the subcellular localization prediction. According to the evolutionary relationship, CAB family members are divided into 13 subfamilies, and the Lhcb1 subfamily has the most members. Cis-acting element analysis of promoter shows that CAB family members have a lot of light-responsive elements, as well as other elements related to growth and development, hormone response, and adversity stress. The members of Lhcb1 subfamily were cloned from tea plants, CAB1, CAB6, and CAB7 genes were screened by sequence alignment. The expression analysis shows that CAB1, CAB6, and CAB7 genes had tissue expression characteristics with higher expression levels in buds, leaves and fruits, and could respond to various stresses. Finally, the qRT-PCR indicates that the expressions of CAB1, CAB6, and CAB7 genes were consistent in the yellow and green leaves. Compared with green leaves, the expression of CAB genes in yellow leaves were significantly down-regulated. The correlation analysis of gene expressions and related leaf color parameters shows that the gene expressions of CAB1, CAB6, and CAB7 were significantly correlated with leaf color parameters a, b, L, and chlorophyll SPAD values (P<0.01). Among them, the expression of CAB1 shows the highest correlation coefficient. The subcellular localization analysis shows that CAB1 was distributed in the nucleus, cytoplasm, and chloroplasts. The studies analyzed the basic characteristics of CAB family members in tea plants and the key genes related to tea color variation were identified, which provided a theoretical basis for the molecular regulation mechanism of tea color variation.
    Reference | Related Articles | Metrics
    Analysis of the Major Characteristic Aroma Compounds in Different Grades of Jingshan Tea
    ZHANG Huiyuan, MA Kuan, GAO Jing, JIN Yugu, WANG Yujie, SU Zhucheng, NING Jingming, CHEN Hongping, HOU Zhiwei
    Journal of Tea Science    2024, 44 (1): 101-118.   DOI: 10.13305/j.cnki.jts.2024.01.009
    Abstract410)      PDF(pc) (1818KB)(520)       Save
    To characterize the difference of odorants among different grades of Jingshan tea, we investigated the super grade, the first grade, the second grade and the third grade of Jingshan tea by stir bar sorptive extraction gas chromatography-mass spectrometry (SBSE-GC-MS), headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and gas chromatography-olfactometry (GC-O) analysis. Herein, we detected and identified 161 volatile organic compounds. The differences between the four grades of Jingshan tea were revealed by principal component analysis (PCA) and hierarchical cluster analysis (HCA). The variable importance in projection (VIP) of the orthogonal partial least squares discriminant analysis (OPLS-DA) was used to determine candidate differential volatile compounds among tea samples of different grades and further screening of differential compounds was carried out through analysis of relative odor activity value (ROAV) and GC-O analysis. A total of 18 volatile compounds were identified as key odorants for the discrimination of different grades of Jingshan tea, including linalool, geraniol, indole, (Z)-jasmone, dimethyl sulfide, etc. Among them, the contents of hoterienol, methyl jasmonate, and indole in the super grade Jingshan tea were significantly higher than those in other grades, and together with (Z)-jasmone, δ-decalactone, and 1-octen-3-ol and other aroma-active compounds constitute the characteristic floral aroma of super grade Jingshan tea samples. This study revealed significant differences in the characteristic volatile compounds among different grades of Jingshan tea, providing a reference for distinguishing the grades of green teas by chemometrics combined with multivariate statistical analysis.
    Reference | Related Articles | Metrics
    Identification of Antagonistic Streptomycetes Against Anthracnose Pathogen of Tea Plants and Determination of Their Inhibitory Properties
    ZHANG Yudan, TAN Lin, LIU Zhonghua, XIAO Dungen, DENG Yulian, LI Guihua, HUANG Hong, YANG Xueyu, HU Qiulong
    Journal of Tea Science    2024, 44 (2): 283-298.   DOI: 10.13305/j.cnki.jts.2024.02.008
    Abstract319)      PDF(pc) (1871KB)(518)       Save
    Colletotrichum camelliae is an important pathogen causing anthracnose of tea plants. In order to obtain Streptomyces strains with better antagonistic effect on C. camelliae, the dilution coating method and plate standoff method were used to isolate and screen Streptomyces strains from the habitat of tea plantations. Morphological observation, physiological and biochemical characteristics and 16 S rRNA gene sequence analysis were combined to identify their species. Antimicrobial spectrum determination, mycelial growth inhibition test and spore germination inhibition test of C. camelliae were carried out for the isolated strains. The antifungal activities and stabilities of aseptic fermentation filtrate of the isolated strains against C. camelliae were determined by using the mycelial growth rate method. The extracellular enzyme-producing capacity, antimicrobial substance synthesis genes, volatile and non-volatile metabolite antifungal activity of the isolated strains were also determined. The results show that a strain XS-4 with better inhibitory effect on tea anthracnose pathogen was obtained and the plate inhibition effect on tea anthracnose pathogen was 76.42%. The strain XS-4 was identified as Streptomyces polychromogenes, which had good inhibitory effect on eight other plant pathogens and the antifungal properties have a broad spectrum. Scanning electron microscopy results show that the strain XS-4 could inhibit the growth of mycelium of tea anthracnose pathogen, and the mycelium was tightly entangled with each other and deformed. The spore germination inhibition test shows that the fermentation solution of strain XS-4 could inhibit the spore germination of C. camelliae, and the inhibition rate was 62.48%. The best fermentation medium for strain XS-4 was KMB medium, and the inhibitory active substance produced by 7 d incubation in KMB medium had the best inhibitory effect on tea anthracnose, the aseptic fermentation filtrate of strain XS-4 had a better stability to temperature, acid and alkali, ultraviolet, and protease. The non-volatile metabolites of strain XS-4 show better antifungal activity against tea anthracnose pathogen with aninhibition rate of 81.92%. The strain XS-4 has the ability to produce amylase, protease, β-1,3-glucanase, and cellulase. The pks-Ⅰ and pks-Ⅱ genes of strain XS-4 were associated with the production of antimicrobial substances. In conclusion, the strain XS-4 has a great potential for application in the biocontrol of anthracnose in tea plants.
    Reference | Related Articles | Metrics
    Influence of Organic Planting on Soil Microbial Community Composition and Diversity in Tea Gardens
    YAN Yuxiao, ZHOU Dapeng, YANG Yanfen, Xie Jin, LÜ Caiyou, YANG Guangrong, WEN Qinshu
    Journal of Tea Science    2024, 44 (2): 246-260.   DOI: 10.13305/j.cnki.jts.2024.02.003
    Abstract312)      PDF(pc) (1609KB)(513)       Save
    To reveal the influence of organic planting on the community composition and diversity of soil microbial community, 4 types of soils (ancient tea gardens, modern tea gardens, rubber fields, wastelands) were used as the research objects in 3 representative ancient tea mountains (Manzhuan, Yiwu and Youle) in Mengla County, Yunnan Province. The community composition of bacteria and fungi were identified using Illumina MiSeq PE300 high-throughput sequencing technology. The effects of organic planting and planting years on soil physical and chemical properties, microbial community composition characteristics and diversity were analyzed. The results show that organic planting could promote soil organic matter accumulation and increase the contents of nitrogen, phosphorus and potassium nutrients. The common number of bacteria OTUs in the soils of three tea gardens and non-tea gardens was 381. Among them, Yiwu Wasteland had highest number of unique OTUs (293), while the Rubber Land of Manzhuan had the lowest number of unique OTUs (28). The total number of fungi OTUs was only 24, with the highest number of fungi OTUs unique to Manzhuan ancient tea garden (337) and the lowest number of OTUs unique to Yiwu Modern Tea Garden (55). In addition, The Shannon diversity index of bacteria reached 5.88-6.62, which was significantly higher than that of fungi (2.71-4.30). The dominant bacteria and fungi in tea garden soils were basically similar to those in non-tea garden soil. However, there were significant differences in relative abundance among identified Acidimicrobiales, Bradyrhizobium, Varibacter, Xanthobacteraceae, Nitrospira, Bryobacter, Acidibacter and Planomyceteaceae among different tea mountains and land use modes. Compared with wasteland and rubber land, the relative abundance of Chaetomiaceae, Penicillium, Fusarium, Trichoderma, Mortierella, Agaricales and Eurotiomycetes in tea garden soil fungal communities were significantly higher than those in other soils. The abundance index of bacterial community Chao1 was significantly and positively correlated with soil TN and TP, and the bacterial community composition was more stable than the fungal community composition of the three mountains with ancient tea plants. Except for some tea garden soils, the abundance of soil bacteria increased with the increase of organic planting and planting years, while the abundance of fungi decreased and then increased with the beginning of organic planting. The diversity level of bacteria and fungi in modern and ancient tea gardens decreased with the increase of organic planting and planting years.
    Reference | Related Articles | Metrics
    Effects of Nitrogen Form and Weak Light Stress on Tea Plant Growth and Metabolism
    SHEN Ruihan, MA Lifeng, YANG Xiangde, FANG Li
    Journal of Tea Science    2023, 43 (3): 349-355.   DOI: 10.13305/j.cnki.jts.2023.03.01
    Abstract379)      PDF(pc) (295KB)(511)       Save
    In order to analyze the effects of N form and weak light stress on the tea plant growth and metabolism, the two-year-old cutting seedlings of ‘Longjing 43’ were taken as experimental materials, and two different forms of N sources (NH4+-N and NO3--N) and two light intensities (normal light and weak light) were supplied under solution culture. The results show that: (1) the net photosynthetic rate of tea seedlings was mainly affected by the N form under normal light intensity. The net photosynthetic rate of tea seedlings treated with NH4+-N was significantly higher than that treated with NO3--N. Under the same nitrogen conditions, compared to normal light, weak light stress had a tendency to reduce the net photosynthetic rate of tea seedlings. (2) Under normal light intensity, the chlorophyll content in young shoots treated with NH4+-N was significantly higher than that treated with NO3--N, but the chlorophyll a (Chl a)/chlorophyll b (Chl b) ratio was basically unchanged. The chlorophyll content increased significantly after weak light stress, but Chl a/b ratio under NH4+-N treatment was significantly increased, while Chl a/b ratio under NO3--N treatment was slightly decreased. NO3--N treated tea plants showed better shade tolerance than that treated with NH4+-N. (3) N uptake by tea seedlings was mainly influenced by both N form and light, and weak light stress helped to improve the accumulation of N in new shoots of tea seedlings. The N content of NH4+-N treated tea seedlings was significantly higher than that treated with NO3--N under normal light. Weak light stress significantly increased the above-ground N content in tea plants. (4) Under normal light intensity, the contents of free amino acids and caffeine in young shoots treated with NH4+-N were significantly higher than those treated with NO3--N, while the ratio of tea polyphenol to free amino acids was lower. After weak light stress, the contents of free amino acid and caffeine in shoots further increased, while the contents of tea polyphenol and the ratio of tea polyphenol to free amino acids continued to decline. The increase rate of total free amino acid and descent rate of tea polyphenol and tea polyphenol/free amino acids ratio were faster in young shoots treated with NO3--N than those treated with NH4+-N. The composition of shoot quality was mainly affected by light intensity, but tea polyphenol-free amino acids ratio was influenced by both light intensity and N form. The research results provide theoretical basis for the analysis of its mechanism.
    Reference | Related Articles | Metrics
    Analysis of Photosynthetic and Fluorescence Characteristics of Albino Tea Plants
    LIU Dongna, GONG Xuejiao, LI Lanying, HUANG Fan, YAO Yu, XU Yaqiong, GAO Yuan, LUO Fan
    Journal of Tea Science    2023, 43 (6): 757-768.   DOI: 10.13305/j.cnki.jts.2023.06.002
    Abstract362)      PDF(pc) (557KB)(510)       Save
    To facilitate the scientific assessment of germplasm evaluation and cultivation management of albino tea plants (Camellia sinensis L.), this study investigated the photosynthetic pigment contents, as well as the photosynthetic and chlorophyll fluorescence characteristics of three albino cultivars, with the normal tea cultivar ‘Fuding dabaicha’ (FD) as the control. The results show that (1) the total chlorophyll content of yellow tea leaves was 71.7%-86.8% lower than that of the control cultivar, and the total carotenoid content remained between 0.16 mg·g-1 and 0.31 mg·g-1. (2) The net photosynthetic rate (Pn), stomatal conductance (Gs), water use efficiency (WUE), the maximum net photosynthetic rate (Pn max), and light saturation point (LSP) of three albino tea cultivars were significantly decreased, and the optical compensation point (LCP) was significantly was than those of the control. (3) The photosynthetic processes of albino tea cultivars, such as absorption, transformation and consumption of light energy were significantly different from those of the control. Among them, the relative variable fluorescence at L and J points in the OJIP curve of albino tea cultivars ‘Jinfeng 2’ (JF2) and ‘Zhonghuang 1’ (ZH1) were significantly higher. Among the chlorophyll fluorescence kinetic parameters, MO, DIO/RC, φDO and φRO increased significantly, while FV/FO, ETO/RC, φPO, φEO, ΨEO and PIabs decreased significantly. Our study found that the photosynthetic efficiency, potential and ecological adaptability of albino tea leaves were significantly decreased. The significant reduction of photosynthetic pigment, the significant decrease of PSⅡ light capture and photosynthetic electron transfer efficiency, and the significant increase of heat dissipation energy were the considerable reasons for inhibition of photosynthetic performance in albino tea plants.
    Reference | Related Articles | Metrics
    Physiological Differences and Expression Analysis of Wax Synthesis Related Gene WSD1 in Tea Roots Treated with Fluorine
    SONG Bo, JIA Peining, YE Wenqi, WU Jun, SUN Weijiang, XUE Zhihui
    Journal of Tea Science    2024, 44 (2): 219-230.   DOI: 10.13305/j.cnki.jts.2024.02.010
    Abstract330)      PDF(pc) (3895KB)(507)       Save
    Tea plant, as one of the plants with high fluorine contents, has fluoride-polymerizing property. In this paper, based on scanning electron microscopy, the roots of ‘Huangdan’ and ‘Foshou’ were treated with different fluoride concentrations (10 mg·L-1 and 50 mg·L-1) and different time periods (1 d and 16 d). The differentially expressed gene WSD1 of tea wax synthesis under fluoride treatment was screened from the transcriptome data of our research group. The results show that under 50 mg·L-1 fluoride treatment, the epidermal cells of ‘Huangdan’ root had slightly more wax on the surface and relatively loose cell arrangement, while the epidermal cells of ‘Foshou’ root had blurred boundaries, significantly more wax on the surface, and fluorine intolerance symptoms such as cell wall distortion and breakage. Quantitative fluorescence results of WSD1 related to wax synthesis show that WSD1 had a significant up-regulation effect on the wax content of tea root under exogenous fluoride treatment. The prediction results of WSD1 protein interaction network and correlation analysis show that WSD1 was negatively regulated by CSS0041298, CSS0012327 and CSS0049082. This study provided a theoretical reference for alleviating fluorine stress in tea plants from the perspective of the interaction between tea plants and wax synthesis, and provided a scientific basis for further exploring the regulation of fluorine absorption in tea plants and the breeding of fluorine-tolerant tea cultivars.
    Reference | Related Articles | Metrics
    Preparation of a Cross-linked Polyphenol Oxidase Aggregate Based on Catechins and Its Efficient Catalytic Synthesis of Theaflavin-3,3ʹ-digalate
    ZHOU Jinghui, LIU Changwei, ZHANG Sheng, XU Gang, XU Wei, HUANG Jian′an, LIU Zhonghua
    Journal of Tea Science    2023, 43 (3): 377-388.   DOI: 10.13305/j.cnki.jts.2023.03.005
    Abstract394)      PDF(pc) (1818KB)(492)       Save
    In order to prepare theaflavin more efficiently and economically, catechins were used as the cross-linking reagent in this study, and a polyphenol oxidase (tyrosinase) crossed-linked aggregate derived from Bacillus megaterium was prepared and used for the synthesis of theaflavin-3,3ʹ-digalate. Through optimization of enzyme cross-linking parameters and the catalytic performance before and after cross-linking, the results show that the optimal enzyme activity recovery rate of cross-linked enzyme (200 U·mL-1) could be obtained at pH 4.0, EGCG 0.5 mg·mL-1 and cross-linking time 50 min. Compared with free enzymes, cross-linked enzymes showed better catalytic performance (thermal stability, organic solvent tolerance, substrate tolerance). When the cross-linked enzyme was used to synthesize theaflavin-3,3′-digallate, the concentration of the product could reach 800 μg·mL-1, and the cross-linked enzyme could be reused for at least three batches. This method could significantly reduce the application cost of theaflavin, which has potential industrial application value.
    Reference | Related Articles | Metrics
    Research on the Path to Realize the Value of Tea Agricultural Cultural Heritage: Empirical Analysis Based on 31 Typical Cases
    MA Jie, YE Chaoyang, MAO Liyu
    Journal of Tea Science    2024, 44 (1): 161-174.   DOI: 10.13305/j.cnki.jts.2024.01.013
    Abstract482)      PDF(pc) (584KB)(488)       Save
    The realization of the value of tea agricultural cultural heritage (TACH) is an important way for its protection and sustainable development. Based on the technology-organization-environment framework (TOE), this study explored the configuration effects of TOE condition variables on TACH value realization, as well as the linkage matching relationship among different elements. Based on 31 typical cases of TACH as research samples, the Fuzzy-sets qualitative comparative analysis (FsQCA) method was applied to explore the influencing factors and driving paths of TACH value realization. This study found that: (1) the realization of the value of TACH is the result of the combined action of necessary and sufficient conditions. (2) the realization of the value of high-level TACH is the result of the combination of core conditions and marginal conditions, with three typical models: "Collaborative Organizational Environment Type", "Social Resource Driven Type " and "Comprehensive Coupling Type". (3) The driving combination for the realization of non-high-level and high-level TACH value is asymmetric. Therefore, different paths could be chosen based on one's own resource endowment and external factors, in order to promote TACH value realization.
    Reference | Related Articles | Metrics
    Experimental Study on High-quality Tea Plucking by Robot
    LI Yatao, ZHOU Yujie, WANG Shaoqing, CHEN Jianneng, HE Leiying, JIA Jiangming, WU Chuanyu
    Journal of Tea Science    2024, 44 (1): 75-83.   DOI: 10.13305/j.cnki.jts.2024.01.003
    Abstract491)      PDF(pc) (1757KB)(482)       Save
    This study evaluated the performance of a newly developed track-type tea plucking robot on Longjing tea picking, including its detection accuracy, localization accuracy, end effector plucking accuracy, time consumption across each stage. The results show that the detection success rate of the developed robot was 88.54%, the localization success rate was 84.07%, the end effector plucking success rate was 87.22%, and the overall plucking success rate was 61.30%. The plucked tea leaves met the requirements of middle-grade Longjing tea. The single tea shoot plucking time was approximately 1.51 s, and the machine could pluck over 2 000 tea shoots per hour, basically achieving the picking efficiency of one machine replacing one worker.
    Reference | Related Articles | Metrics
    Effect of Tea Polyphenols on the Determination of Reducing Sugar in Tea Food
    SHENG Zheng, DU Wenkai, WANG Chongchong, ZHANG Boan, ZHANG Haihua, DU Qizhen
    Journal of Tea Science    2023, 43 (4): 567-575.   DOI: 10.13305/j.cnki.jts.2023.04.011
    Abstract375)      PDF(pc) (2929KB)(482)       Save
    In order to find an accurate method to determine the content of reducing sugar in the digestive products of tea noodle products, phenolic acid, phenolic and glucose blending systems and phenolic and amylenzymeate blending systems alone were used to study the effects of four typical phenols including epigallocatechin gallate (EGCG), gallic acid, proanthocyanidin and ferulic acid on the quantitative determination of reducing sugars by 3,5-dinitrosalicylic acid (DNS) method, glucose oxidase/peroxidase (GOPOD) method and fluorescence-assisted sugar electrophoresis (FACE) method. The results show that ferulic acid had no effect on the DNS method, while EGCG, gallic acid and proanthocyanidin could react with DNS, indicating that they would affect the accuracy of the DNS method. All four phenolic substances significantly reduced the glucose results determined by GOPOD method, while the FACE method was not affected by phenols and could visually characterize the distribution of oligo reducing sugar in the amylase hydrolysate. Therefore, the FACE method has a good application value in determining the content of reducing sugars in tea noodle products and their enzymatic digestion products.
    Reference | Related Articles | Metrics
    Glyphosate-stress Effects on Shikimic Acid in Tea Leaves
    LIU Hongxia, LIU Yingying, CHEN Hongping, CHAI Yunfeng
    Journal of Tea Science    2023, 43 (5): 657-666.   DOI: 10.13305/j.cnki.jts.2023.05.005
    Abstract453)      PDF(pc) (1058KB)(479)       Save
    To investigate the effect of glyphosate stress on the growth and shikimic acid metabolism of tea (Camellia sinensis L.) plants, tea seedlings were cultured in nutrient solution with different concentrations of glyphosate and the visual phytotoxicity on tea leaves was observed. The non-targeted analysis of non-volatile metabolites in the leaves and quantitative determination of shikimic acid and glyphosate in the leaves were carried out by ultra-high performance liquid chromatography-quadrupole orbitrap high-resolution mass spectrometry. The results show that the tea seedlings under the high dose of glyphosate (200 mg·L-1) treatment exhibited characteristics of pesticide damage, while the tea seedlings under the low dose of glyphosate (50 mg·L-1) treatment and control did not show apparent pesticide damage. Mass spectrometric and statistical analysis indicates that there were significant changes in the contents of shikimic acid pathway metabolites in the leaves of glyphosate-treated tea seedlings, with shikimic acid being one of the main differential metabolites. Within 21 d, the accumulation of shikimic acid in leaves was highly positively correlated with the absorption amount and action time of glyphosate. When the absorption amount of glyphosate was larger than 28 mg·kg-1, the shikimic acid metabolism in tea plants was significantly inhibited, resulting in a large accumulation of shikimic acid in tea leaves. Compared with the control group, the content of shikimic acid in tea leaves affected by pesticides increased about 16-fold. This study shows that shikimic acid is one of the main metabolites of tea plants in response to glyphosate stress.
    Reference | Related Articles | Metrics
    Research on the Inhibition of Tea Extracts and Different Types of Tea on Mycobacterium tuberculosis
    XU Jing, HUANG Youyi, HUANG Jin, LI Chunlei
    Journal of Tea Science    2024, 44 (2): 341-349.   DOI: 10.13305/j.cnki.jts.2024.02.006
    Abstract228)      PDF(pc) (1177KB)(479)       Save
    This study was aimed at investigating the inhibitory effect of tea on Mycobacterium tuberculosis strain H37Ra by using the Oxford cup method for the bacteriostatic assay of H37Ra. The inhibitory abilities of different tea extracts (tea polyphenols, tea polysaccharides and tea saponins) and different teas (Huanong Lvzhen, Dazongchaoqing, Guangdong Dayeqing, Fuding Shoumei, Tieguanyin, Fenghuang Dancong, Keemun black tea, Xiaguan Tuocha and Green brick tea) on the activity of H37Ra strain were studied. The results of the bacteriostatic experiments of tea extracts show that tea polyphenols exhibited significant bacteriostatic ability against H37Ra strain and the bacteriostatic effect was gradually enhanced with the increase of tea polyphenol concentration. At a concentration of 40 mg·mL-1, tea polyphenols show long-term inhibition of the growth of H37Ra strain. Tea polysaccharides and saponins had no inhibitory effect on Mycobacterium tuberculosis. Different types of tea exhibit varying degrees of antibacterial ability, among which, the ethyl acetate fraction of Fenghuang Dancong had a stronger bacterial inhibition ability than other isolates. The column chromatography separated by 60% ethanol had the strongest bacterial inhibition ability, suggesting that tea polyphenols were the main components to inhibit the growth of H37Ra strain. The results confirm that tea has an inhibitory effect on H37Ra strain and different tea extracts and different tea types have different antibacterial abilities, which provides a new idea for the development of tuberculosis related antibacterial drugs.
    Reference | Related Articles | Metrics
    Research Progress in the Residue Analysis and Risk Assessment of Chiral Pesticides in Tea
    HU Yue, NING Yating, LI Hongxia, LUO Fengjian, YIN Rongxiu, ZHANG Xinzhong
    Journal of Tea Science    2024, 44 (3): 363-385.   DOI: 10.13305/j.cnki.jts.2024.03.013
    Abstract376)      PDF(pc) (902KB)(476)       Save
    Chiral pesticides have one or more enantiomers, and their biological activity, toxicity, environmental behavior, degradation and metabolism may be different. Tea, as one of the three major beverages, has attracted much attention in terms of quality and safety. However, more attention is currently paid to the total amount of pesticide racemate residues. With the development of analytical techniques, it is particularly crucial to fully understand the stereoselective behavior of the chiral pesticide enantiomer in tea, as well as to examine residue degradation in tea and to set the maximum residue limits for enantiomers. This would help to improve the efficacies of chiral pesticides and reduce their residues and toxicities to non-target organisms. In this paper, the current status of chiral pesticide separation and residue detection technology in tea were reviewed, such as liquid chromatography, gas chromatography and supercritical fluid chromatography. In addition, it provided a summary of the residue degradation behaviors and risk assessment of chiral pesticide enantiomers in tea, which would be useful as a guide for further in-depth studies on chiral pesticide enantiomers in tea.
    Reference | Related Articles | Metrics
    Genetic Diversity and Population Structure Relationship Analysis of Wild Tea Germplasm Resources in Badong County, Hubei Province
    CUI Qingmei, LIANG Jinbo, MA Huijie, HU Shuangling, CHEN Qinghua, WU Liyun, HE Mengdi, WANG Liubin, TAN Licai, ZHANG Qiang, WANG Liyuan
    Journal of Tea Science    2024, 44 (2): 193-206.   DOI: 10.13305/j.cnki.jts.2024.02.002
    Abstract290)      PDF(pc) (924KB)(475)       Save
    Wild tea germplasm resources have high genetic diversity and are also a high-quality source for the breeding and utilization of local tea cultivars. In this study, 26 resources of wild tea plants from Badong County, Hubei Province, were collected and the genetic diversity and population structure of wild tea plants were analyzed using SSR molecular markers with the normal tea cultivars as the control. The results are as follows: (1) 16 pairs of primers detected an average of 5.12 alleles and 3.65 effective loci in the test materials. A total of 82 alleles were amplified, with each pair of primers amplifying a range of 3-8 labeled alleles. The average Shannon diversity index was 1.378. (2) Six core primer sites were selected from 16 pairs of primers, which can effectively detect and identify 26 materials in this study. (3) UPGMA evolutionary map of individual samples could divide all 48 materials into 7 categories. Wild tea plants and cultivated tea plants could be effectively divided through SSR detection. Population genetic structure analysis suggests that 26 wild tea samples could be divided into 2 subgroups. (4) Based on biochemical components, two samples with high EGCG content and two tea germplasms suitable for making black tea were selected. Results of this research show that diversity level of wild tea resources in Badong was high, with high genetic variation within the population. This study laid a foundation for further protection, development and utilization of wild tea germplasm resources in Badong.
    Reference | Related Articles | Metrics
    Selection and Validation of Internal Reference Genes for qRT-PCR Analysis under Fluoride Stress in Camellia sinensis Leaves
    LI Qinghui, LI Rui, WEN Xiaoju, NI Dejiang, WANG Mingle, CHEN Yuqiong
    Journal of Tea Science    2024, 44 (1): 27-36.   DOI: 10.13305/j.cnki.jts.2024.01.001
    Abstract305)      PDF(pc) (1966KB)(473)       Save
    In order to screen the internal reference genes for quantitative real-time PCR analysis in tea leaves under fluoride stress, the low-fluoride cultivar ‘Fuding Dabaicha’ and the high-fluoride cultivar ‘Jinguanyin’ were used as experimental materials according to the fluoride evaluation results in these tea cultivars previously. The qRT-PCR technology combined with three Excel-based algorithms (geNorm, NormFinder and BestKeeper) were used to analyze the expression stabilities of eight candidate reference genes (CsACTIN, CsEF-1α, CseIF-4α, CsGAPDH, CsPP2A, CsTBP, CsTIP41 and CsUBC) in tea leaves (shoots and old leaves) under fluoride treatment (0.42 mmol·L-1 NaF) for different time periods (0, 1, 3, 7 d). The results indicate that under fluoride stress, the optimal combination of reference genes in tea shoots was CsEF-1α, CsTIP41, CsTBP and CsACTIN and the optimal combination of reference genes in old leaves was CsPP2A and CsUBC. Moreover, to further confirm the stability of the selected reference genes, the expression levels of CsFEX in tea shoots and old leaves were analyzed using their corresponding optimal internal reference gene combinations. The expression profiles of CsFEX in tea shoots or old leaves between the two cultivars were consistent, indicating that the combinations of four and two internal reference genes were sufficient for normalizing the target gene expression in tea shoots and old leaves under fluoride stress, respectively.
    Reference | Related Articles | Metrics
    Study on the Spatiotemporal Evolution and Spatial Differentiation Pattern of Carbon Sink in China’s Tea Industry
    YUAN Liwen, ZHANG Junbiao, QIN Jiangnan
    Journal of Tea Science    2024, 44 (1): 149-160.   DOI: 10.13305/j.cnki.jts.2024.01.011
    Abstract451)      PDF(pc) (655KB)(472)       Save
    The tea garden ecosystem has an important carbon storage function. Analyzing and evaluating the carbon sink level during the production and planting process of tea gardens is of great significance for scientifically evaluating the potential ecological value of tea gardens and promoting the green and low-carbon development of the tea industry. This paper selected data from 16 major tea producing provinces in China from 1978 to 2020, used biomass models of tea plant growth cycles and soil carbon content models to calculate and evaluate the basic situation of carbon sinks in China’s tea industry. The center of gravity fitting model was used to analyze the spatiotemporal evolution of carbon sinks in the tea industry, and the driving factors of spatial differentiation were explored in conjunction with geographic detector models. The results show that: (1) The total carbon sink of China’s tea industry had shown a phased growth trend, reaching 735.311 million tons in 2020, and the accumulation of soil carbon sink was higher than that of plant carbon sink. The carbon sink intensity showed a “rise-decrease-rise” characteristic. (2) There were significant differences in carbon sink intensity among different provinces in the tea industry. High-intensity provinces were concentrated in the eastern coastal and western regions of China, and the carbon sink gravity center had long been located within Hunan province, but there was a slight trend of westward displacement. (3) The agricultural subsidies and the development level of agricultural economy were important driving forces that affect the spatial distribution pattern of carbon sinks in China’s tea industry, but there were differences in the dominant factors for the spatial differentiation of carbon sinks in different regions. Based on this, this paper proposed relevant suggestions from the management and operation of carbon sinks in the tea industry, as well as the formulation of industrial policies.
    Reference | Related Articles | Metrics
    A Grading Identification Method for Tea Buds Based on Improved YOLOv7-tiny
    HONG Konglin, WU Minghui, GAO Bo, FENG Yening
    Journal of Tea Science    2024, 44 (1): 62-74.   DOI: 10.13305/j.cnki.jts.2024.01.006
    Abstract467)      PDF(pc) (2946KB)(471)       Save
    The intelligent grading and recognition of tea buds in a natural environment are fundamental for the automation of premium tea harvesting. To address the problems of low recognition accuracy and limited robustness caused by complex environmental factors like lighting, obstruction, and dense foliage, we propose an enhanced model based on YOLOv7-tiny. Firstly, a CBAM module was added into the small object detection layer of the YOLOv7-tiny model to enhance the model's ability to focus on small object features and reduce the interference of complex environments on tea bud recognition. We adjusted the spatial pyramid pooling structure to lower computational costs and improve detection speed. Additionally, we utilized a loss function combining IoU and NWD to further enhance the model's robustness in small object detection by addressing the sensitivity of the IoU mechanism to position deviations. Experimental results demonstrate that the proposed model achieves a detection accuracy of 91.15%, a recall rate of 88.54%, and a mean average precision of 92.66%. The model's size is 12.4 MB. Compared to the original model, this represents an improvement of 2.83%, 2.00%, and 1.47% in accuracy, recall rate, and mean average precision, respectively, with a significant increase of 0.1 MB in model size. Comparative experiments with different models show that our model exhibits fewer false negatives and false positives in multiple scenarios, along with higher confidence scores. The improved model can be applied to the bud grading and recognition process of premium tea harvesting robots.
    Reference | Related Articles | Metrics
    Population Structure and Genetic Differences of Tea Germplasm Resources in Fujian
    YANG Jun, ZHANG Lilan, ZHANG Wenjing, CHEN Linhai, ZHENG Guohua, LI Yijing, WANG Rangjian
    Journal of Tea Science    2023, 43 (6): 769-783.   DOI: 10.13305/j.cnki.jts.2023.06.006
    Abstract391)      PDF(pc) (749KB)(470)       Save
    The population genetic structure, genetic diversity, genetic differentiation, gene flow, molecular variance of 208 tea germplasm resources in Fujian were studied by using 38 pairs of SSR fluorescent primers, and the leaf traits were also investigated. The results show that the Nei’s genetic diversity index and Shannon’s information index of 208 tea resources in Fujian were 0.674 and 1.444, respectively. The average values of leaf area and length-width ratio were 27.442 cm2 and 2.516, respectively. The genetic variation of tea germplasm in Fujian were mainly originated from individual genetic variation. The test materials were divided into 8 groups by the structure software analysis. The material sources in groups a, b, f, and h were single, while the material sources in groups c, d, e, and g were complex. The genetic background of tea population in different regions was similar. There were a total of 40 tea cultivars from Fujian in groups a, b, and e. Group a was mainly cultivars suitable for processing green tea. Group b was mainly cultivars suitable for processing oolong tea. The representative cultivars within group e were suitable for processing green tea. There is a certain correlation between the group attributes of group a, group b, group e and the suitable tea cultivars. Group c included the resources from Nanjing county, Yunxiao county and Pinghe county, with relatively close geographical locations. The group attributes are related to geographical sources. The gene flow value between group g and group e was 6.321, indicating frequent gene exchange between groups. The clustering of group similarity coefficients shows that group d and group b were closely related. The genetic differentiation between group h and other groups was obvious, and the characters of leaf area and leaf serration number were significantly different (P<0.05). The genetic relationship between group f and other groups was relatively distant, and there were significant differences in the characteristics of leaf serration number and leaf vein logarithm (P<0.05), showing that both group h and group f had certain uniqueness and need further identification. These research results provided a certain reference for the identification, screening, and utilization of tea germplasm resources in Fujian.
    Reference | Related Articles | Metrics
    Changes in Chemical Composition of Zijuan Tea under Anaerobic Treatment Conditions and Their Effects on in vitro ACE Activity
    YANG Gaozhong, SHI Jiang, ZHANG Yue, PENG Qunhua, LIN Zhi, LÜ Haipeng
    Journal of Tea Science    2023, 43 (4): 553-566.   DOI: 10.13305/j.cnki.jts.2023.04.007
    Abstract357)      PDF(pc) (1565KB)(456)       Save
    In this study, fresh leaves of Zijuan tea were treated with anaerobic treatment and used to make freeze-dried, green, black and white tea samples. The main non-volatile components (such as catechins, amino acids, anthocyanins) in these samples were determined and their in vitro angiotensin-converting enzyme (ACE) inhibitory activities were evaluated by high performance liquid chromatography. In addition, molecular docking simulation experiments were conducted to investigate the potential interaction mechanisms between the major chemical components in tea and ACE. The results show that the GABA content in the freeze-dried samples after anaerobic treatment increased to 1.72 mg·g-1, which was significantly higher than that in the tea samples without anaerobic treatment (0.04 mg·g-1, P<0.05). The composition and contents of amino acids and polyphenolic compounds in the tea samples were significantly affected by the processing methods after anaerobic treatment. The white tea process could increase the contents of amino acid components in the tea samples, while the freeze-drying process could maximize the retention of polyphenolic compounds in the tea samples. The in vitro ACE inhibitory activity of Zijuan tea fresh leaf samples was significantly enhanced after anaerobic treatment (P<0.05); the strongest ACE activity inhibition was observed in samples prepared by freeze-drying process after anaerobic treatment, which was significantly higher than that of samples prepared by green, white, and black tea processing methods (P<0.05). In addition, molecular docking simulation experiments reveal that the strength of the interaction between the main chemical components in tea and ACE was related to the hydrophilic groups and aromatic ring structures in their molecular structures. The results of the study helped to reveal the effect of anaerobic treatment on the ACE inhibitory activity of Zijuan tea and provided a theoretical basis for the development of special functional Zijuan tea products with potential treatment of hypertension.
    Reference | Related Articles | Metrics
    Research Progress on the Mechanism of Natural Tea Components in Alleviating Acne
    WU Zhiyuan, WANG Kaibo, CHEN Silin, ZHAO Bi, SHEN Shiquan
    Journal of Tea Science    2024, 44 (1): 16-26.   DOI: 10.13305/j.cnki.jts.2024.01.010
    Abstract494)      PDF(pc) (1220KB)(450)       Save
    Tea, as a natural beverage, is highly favored due to its clear health benefits. With in-depth research on the active ingredients of tea in recent years, it has been confirmed that natural components can have positive effects on various disease models. Acne is an inflammatory skin disease with a high prevalence and recurrence rate. In addition to traditional clinical diagnosis and treatment, complementary and alternative therapies represented by patches, skin care, and dietary improvement are also popular. In the market, more and more acne control products claim to add tea active ingredients to the raw materials. Natural components such as tea polyphenols, caffeine, theanine and tea saponins have shown great potential in alleviating acne. In this paper, the effects and molecular mechanisms of different functional components of tea on inhibiting sebum secretion, alleviating acne, improving skin microbial imbalance, and alleviating skin focal inflammation were reviewed, in order to provide reference for the research and development of tea natural products.
    Reference | Related Articles | Metrics
    Exploratory Study on the Image Processing Technology-based Tea Shoot Identification and Leaf Area Calculation
    LÜ Danyu, JIN Zijing, LU Lu, HE Weizhong, SHU Zaifa, SHAO Jingna, YE Jianhui, LIANG Yuerong
    Journal of Tea Science    2023, 43 (5): 691-702.   DOI: 10.13305/j.cnki.jts.2023.05.007
    Abstract416)      PDF(pc) (2181KB)(448)       Save
    In this study, based on the picture collection of tea shoot growth in the field, we used deep learning target detection algorithm YOLOv5 to construct a model for identifying different growth stages of tea shoots, and the testing results indicate that the model had high accuracy. Furthermore, the Image-J software and the image processing methods of threshold cutting based on Gray, RGB and HSV values were applied to process tea leaf area, and the accuracy and efficiency of different methods were compared. The results show that the accuracy of HSV-based algorithm system of cutting tea leaves and automatically calculating tea leaf area was over 94%, which had better performance than RGB-based algorithm system. The research results provide technical support for the intelligent recognition model of tea growth state and information extraction algorithm of leaf traits, and also build a theoretical basis for the development of tea bud automatic recognition module of tea plucking machinery.
    Reference | Related Articles | Metrics
    The Aroma Change of the Enzymatic Processing Stage of Beauty Tea in Different Withering Methods
    DING Fengjiao, YUAN Yuwei, LI Yuanchao, LIN Jinlong, YAN Jiawei, LI Pengchun, JIN Shan
    Journal of Tea Science    2024, 44 (3): 469-482.   DOI: 10.13305/j.cnki.jts.2024.03.008
    Abstract241)      PDF(pc) (1821KB)(448)       Save
    To investigate the aroma changes between the natural withering indoors and sunlight withering outdoors during the enzymatic processing stage of beauty tea, the volatiles collected in the process samples of beauty tea during the enzymatic processing stage were analyzed by gas chromatography-mass spectrometry (GC-MS). Orthogonal partial least squares-discriminant analysis (OPLS-DA) was used to screen for differential volatiles. The results show that the differential volatiles of beauty teas from the two withering methods were similar at different stages of processing, in which the contents of N-hexanol, trans-2-hexen-1-ol, cis-3-hexen-1-ol, geraniol, hexyl isovalerate, cis-3-hexenyl butyrate, hexyl butyrate, N-butyrate (trans-2-hexenyl) ester, linalool oxy-furan-type, and linalool increased with the processing, which was the material basis for the formation of the aroma quality of Beauty Tea. While the contents of 2-hexenal, (E)-2-hexenyl-2-methylbutyrate, (E)-3-hex-enyl butyrate, ethyl caproate, and ethyl acetate-leaf alcohol ester declined continuously with the processing. The results of volatile determination show that there was no significant difference in the types of volatile components in the processing stage of beauty tea between the two withering methods, but mainly in the content, and most of the volatile components were more abundant in the outdoor sunlight withering beauty tea. This study aimed to explore the aroma changing rule of beauty tea during the enzymatic processing stage, in order to provide a theoretical basis for the optimization of beauty tea processing technology, and to improve the flavor quality and economic value of beauty tea.
    Reference | Related Articles | Metrics
    Identification of Transcription Factors Interacting with CsNCED2 Promoter and Their Response to Abiotic Stress
    LI Jiasi, LIU Yingqing, ZHANG Yongheng, ZHANG Ying'ao, XIAO Yezi, LIU Lu, YU Youben
    Journal of Tea Science    2023, 43 (3): 325-334.   DOI: 10.13305/j.cnki.jts.2023.03.007
    Abstract463)      PDF(pc) (1496KB)(447)       Save
    Nine cis epoxide carotenoid dioxygenase (NCED) is a key rate-limiting enzyme in abscisic acid (ABA) synthesis and widely involved in plant growth and development as well as abiotic stress response. CsNCED2 is involved in the response to drought and salt stress in tea plants, while the transcriptional regulation mechanism involved is still unclear. In this study, two transcription factors, CsDof5.4 and CsERF38, which binded to the CsNCED2 promoter were identified by yeast single hybrid (Y1H) library screening. Subcellular localization, yeast self-activation and luciferase (LUC) assay show that they were located in the cell nucleus and could activate the expression of CsNCED2. RT-qPCR results show that the expressions of CsERF38 and CsDof5.4 were highly correlated with CsNCED2 under salt stress. While under drought stress, only the expression of CsERF38was highly correlated with that of CsNCED2. In this study, two transcription factors (CsDof5.4 and CsERF38) binding to the CsNCED2 promoter were identified. Both drought and salt stresses could induce the expression of CsNCED2, thus participate in the abiotic stress response in tea plants.
    Reference | Related Articles | Metrics
    Risk Assessment and Source Analysis of Heavy Metal Pollution in Chinese Tea Gardens in 2000-2022 Based on Meta-analysis
    YANG Yanhu, CHEN Xiaohan, ZHANG Xiaoqing, REN Dajun, ZHANG Shuqin, CHEN Wangsheng
    Journal of Tea Science    2024, 44 (1): 37-52.   DOI: 10.13305/j.cnki.jts.2024.01.002
    Abstract461)      PDF(pc) (1446KB)(447)       Save
    Heavy metal pollution is one of the important factors affecting the ecological environment of tea gardens and the safety of tea products. This study collected literature on heavy metal (Cu, Pb, As, Hg, Cd, Cr, Zn, Ni) pollutions in tea garden soils in major tea producing areas in China, including Hubei, Hunan, Fujian, Yunnan, Guizhou and Sichuan. The weight of a single study was obtained using meta-analysis method to obtain the weighted average of heavy metal concentrations in tea garden soils in each province and across the country. The potential ecological risk index method and geological accumulation index method were used for ecological risk assessment, and source analysis using the APCS-MLR model was applied. The results show that compared with the background values, all 8 heavy metals were enriched to a certain extent, with Hg and Cd pollutions being more severe. The moderate and above risks of Hg were mainly distributed in inland provinces such as Guizhou, Shaanxi, Sichuan and Anhui. The moderate and above risks of Cd were mainly distributed in coastal provinces such as Guangdong, Fujian, Zhejiang, Jiangsu, Shandong, Hainan, etc. The two heavy metals show mild to moderate risks. Compared with other countries in the world, tea gardens or agricultural land in developing countries generally have higher levels of heavy metals, with Cd and Hg being the elements with more severe pollution levels. The source analysis results show that the first, second, third, and fourth principal components are natural sources, industrial activity pollution sources, traffic exhaust pollution sources, and agricultural activity pollution sources, respectively. Industrial and agricultural activities are the main pollution factors, with Hg mainly coming from industrial activities and Cd mainly coming from agricultural activities.
    Reference | Related Articles | Metrics
    Research Progress on the Application of Gas Chromatography-ion Mobility Spectrometry in the Field of Tea
    GAN Fangyuan, LIU Zhenping, FU Bingsheng, LONG Daoqi, PANG Kejing, JIANG Rong
    Journal of Tea Science    2024, 44 (4): 565-574.   DOI: 10.13305/j.cnki.jts.2024.04.001
    Abstract297)      PDF(pc) (484KB)(445)       Save
    Tea is an important economic crop in traditional Chinese agriculture, with a long history and rich cultural connotation. The different parameters of tea origin, storage time and processing method determine the quality, nutritional value and market positioning. Known as a newly developed non-destructive testing technique, GC-IMS can analyze the volatile organic compounds (VOCs) of samples under normal pressure to characterize the differences between samples. This paper collected the existing literature data, reviewed the applications of GC-IMS technology in the study of kind differentiation, grade identification, origin identification, storage time determination and processing quality control of tea, and analyzed the current problems and future prospects of GC-IMS technology in the field of tea application, and provided theoretical reference for the flavor research, process optimization, quality analysis and quality monitoring of tea.
    Reference | Related Articles | Metrics
    Advances on Flavor Chemical Characteristics of Solarization Tea
    XIE Chenxin, ZHAO Feng, LIN Yu, CAI Liangsui, LIN Zhi, GUO Li
    Journal of Tea Science    2024, 44 (4): 554-564.   DOI: 10.13305/j.cnki.jts.2024.04.014
    Abstract389)      PDF(pc) (502KB)(444)       Save
    Tea withering or drying with solarization is beneficial to save a lot of energy cost and contribute to the unique flavor formation. In this paper, the advances of solarization tea were reviewed from the aspects of flavor quality characteristics, flavor chemical characteristics, technical and environmental factors affecting their formation. Linalool, geranyl, 1-octene-3-ol and capric aldehyde are the key aroma components of solarization tea, among which 1-octene-3-ol and 1-octene-3-one may be related to sun exposure flavor. Reasonable use of environmental factors such as sunlight and air humidity is a basic requirement for processing high-quality solarization tea. On this basis, the development of technology upgrading and theoretical research for solarization tea was prospected from the technical, theoretical and industrial levels.
    Reference | Related Articles | Metrics
    Analysis of Flavor Characteristics and Biochemical Composition Differences of Ziyang Green Tea Based on Sensory Evaluation and Metabolomics Techniques
    CHEN Dequan, REN Yangmei, HE Mengdi, LI Youxue, YE Lili, XUE Huaqian, ZENG Jianming, DING Changqing
    Journal of Tea Science    2024, 44 (2): 316-328.   DOI: 10.13305/j.cnki.jts.2024.02.005
    Abstract389)      PDF(pc) (1171KB)(441)       Save
    To analyze the differences in flavor characteristics and biochemical composition of Ziyang green tea with different drying processes, 6 Xixiangtea (hot-air convection drying combined with roller-type conduction drying) and 10 Cuifeng tea (hot-air convection drying) were used for the study, and their flavor profiles and biochemical composition were analyzed by sensory evaluation, component detection,UHPLC-Q-Exactive/TM and multivariate statistical methods. Sensory analysis shows that the aroma of Xixiang tea was mainly high-fresh, and the Cuifeng tea was mainly faint-scent. The color of Xixiang tea was darker green than that of Cuifeng tea. The overall sensory score of Cuifeng tea was higher than that of Xixiang tea. The quantitative analysis shows that the total amino acids and 10 amino acid fractions (histidine, arginine and threonine,…) were significantly higher in Xixiang tea than those in Cuifeng tea (P<0.05), but the contents of tea polyphenols, catechin fractions and caffeine, and other quality components, did not show significant differences. A total of 262 non-volatile compounds were identified by metabolomics analysis, including 13 classes of amino acids, catechins, dimeric catechins, phenolic acids, flavonoid glycosides and organic acids. Partial least squares discrimination and comparative analysis found that there was no difference in metabolite species between Xixiang tea and Cuifeng tea, but there was a difference in their contents. Compounds with VIP>1.2 were selected as key differential compounds, mainly amino acids, phenolic acids and flavonoid glycosides. The contents of amino acids and flavonoi dglycosides in Cuifeng tea were lower than those in Xixiang tea, while the content of dimerized catechins was higher than that of Xixiang tea. This study provided a theoretical basis for a comprehensive understanding of the formation of the quality of Xixiang tea and Cuifeng tea, as well as a reference for the sensory quality of dry tea and biochemical compositional differences due to different drying processes of green tea.
    Reference | Related Articles | Metrics
    Study on the Glycosidically Bound Volatiles and Aroma Constituents in the Processing of Wuyi Rougui
    WU Zongjie, OU Xiaoxi, LIN Hongzheng, YU Xinru, CHEN Shouyue, WU Qingyang, LI Xinlei, SUN Yun
    Journal of Tea Science    2024, 44 (1): 84-100.   DOI: 10.13305/j.cnki.jts.2024.01.005
    Abstract359)      PDF(pc) (1428KB)(441)       Save
    ‘Rougui’, the main cultivar of Wuyi rock tea, is characterized by a rich floral and pungent cinnamon aroma. To elucidate the contribution of key aroma constituents and glycosidically bound volatiles (GBVs) to Wuyi Rougui rock tea, this study employed ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) to investigate the dynamic changes of GBVs and aroma constituents during the processing of Wuyi Rougui rock tea. The results reveal that a total of 276 aroma constituents were identified from 11 different processing stages of Wuyi Rougui rock tea. These aroma constituents belong to various chemical classes, including esters, alcohols, heterocyclic constituents, ketones, aldehydes and terpenes, with heterocyclic constituents, esters, terpenes and alcohols being the predominant aroma components. Orthogonal partial least squares-discriminant analysis (OPLS-DA) identified 35 characteristic aroma constituents in Wuyi Rougui rock tea, as indicated by their Variable Importance in Projection (VIP) values and Odor Activity Values (OAV) greater than 1. Notably, the contents of constituents associated with green and grassy flavor, such as (Z)-3-hexen-1-ol, (E)-2-nonenal and hexanal, exhibited decreasing trends during the processing, while aroma constituents associated with floral or fruity aromas, like linalool, benzyl alcohol, benzaldehyde, eugenol and β-ocimene, displayed increasing trends. Furthermore, in fresh leaves of Wuyi Rougui rock tea, aroma constituents including linalool, benzyl alcohol, benzaldehyde, 2-ethoxy-3-methylpyrazine and (E,E)-3,5-octadien-2-one exhibited ACI values greater than 1, suggesting they are key aroma constituents during the processing of Wuyi Rougui rock tea. Constituents such as dehydrocinnamyl alcohol and α-ionone contributed to the characteristic cinnamon aroma of Wuyi Rougui rock tea. In addition, ten GBVs were identified. During the processing, the contents of glucosides showed an upward trend, while primeveroside showed trend. The total contents of GBVs remained relatively stable. During the late stages of fermentation, both GBVs demonstrated declining trends, particularly constituents like benzyl primeveroside, 2-phenylethyl primeveroside, geranyl glucoside, linayl primeveroside and benzyl glucoside. The results indicate that GBVs were involved in the development of the faint scent and floral-fruity notes of Wuyi Rougui rock tea. This study clarified the role of characteristic aroma constituents and GBVs in the aroma formation of Wuyi Rougui rock tea, in order to better improve the aroma quality of Wuyi Rougui rock tea.
    Reference | Related Articles | Metrics
    Preparation of Torreya Seed Oil-EGCG Nanoemulsion and Its Effect on the Quality of Salad Dressing and Moon Cakes
    WANG Yu'an, DU Wenkai, WAN Jinghong, XIE Dongchao, ZHANG Haihua, JIN Peng, DU Qizhen
    Journal of Tea Science    2024, 44 (2): 269-282.   DOI: 10.13305/j.cnki.jts.2024.02.013
    Abstract257)      PDF(pc) (1893KB)(441)       Save
    The composite nanoemulsion of torreya oil and epigallocatechin gallate (EGCG) was successfully prepared by ultrasonic emulsification method. The stability of the emulsion with different oil/water ratio and EGCG content was analyzed under different storage temperature and time, and the effect of the nanoemulsion on the quality of salad dressing and moon cake was further studied. The results show that the prepared torreya oil-EGCG nanoemulsion had stable properties (particle size=160-180 nm, PDI<0.2, Zeta potential≈﹣60 mV), and the oil/water ratio and EGCG had no significant effects on stability (P>0.05). Refrigeration and 2.0% EGCG nanoemulsion could reduce the loss of EGCG and inhibit its browning. The sensory quality of salad dressing with 1/10 torreya oil-EGCG nanoemulsion and 0.2% NHDC was improved. The antibacterial and antioxidant activity was significantly increased for prolonged quality stability. The addition of torreya oil-EGCG nanoemulsion can slow down the accumulation of acrylamide and reduce the loss of representative unsaturated fatty acids in moon cake baking. The above results indicate that nanoemulsion has great significance and prospects for development and use in improving food quality.
    Reference | Related Articles | Metrics
    The Investigation of the Ameliorate Effect and Mechanism of EGCG on Non-obese GK Rat with Diabetic Kidney Damage
    PENG Liyuan, ZENG Hongzhe, WAN Liwei, WEN Shuai, LIU Changwei, AN Qin, BAO Sudu, HUANG Jian'an, LIU Zhonghua
    Journal of Tea Science    2023, 43 (6): 784-794.   DOI: 10.13305/j.cnki.jts.2023.06.003
    Abstract350)      PDF(pc) (2099KB)(441)       Save
    Epigallocatechin gallate (EGCG) is an antioxidant and anti-inflammatory natural active ingredient, and fewer studies have been conducted on the antioxidant and anti-inflammatory effects of EGCG in DKD and the regulatory mechanisms. This study investigated the effect and mechanism of EGCG on diabetic kidney damage in non-obese GK rats with idiopathic T2DM. Two different doses of EGCG (10 mg·kg-1 and 120 mg·kg-1) were administered to GK rats for 4 weeks. The body weight and daily food intake of rats were monitored during the experiment. At the end of the experiment, the serum and kidney tissues were collected to detect some kidney biochemical and pathological indicators and Nrf2-Keap1/MAPK signaling pathway related gene expression levels. The results show that EGCG could improve the kidney morphology and significantly increase the activities of antioxidant enzymes (such as SOD, CAT and GSH-Px), and inhibit the release of proinflammatory cytokines (MCP-1, IL-1β). In addition, EGCG could restrain oxidant stress by up-regulate the expression level of Nrf2 and inhibit inflammation by down-regulating the expression levels of JNK, NF-κB and P38 genes in kidney. The improvement effect of high dose was better than that of low dose in the experimental range. In conclusion, these results indicate that EGCG could ameliorate kidney injury caused by diabetes, and its mechanism might be related to anti-oxidative stress mediated by Nrf2-Keap1/MAPK signaling pathways.
    Reference | Related Articles | Metrics
    Chemical Composition Analysis of Unique ‘Rattan Tea’ in Yunnan
    FANG Chenggang, YANG Gaozhong, YANG Yingbiao, ZHANG Liqiu, CHEN Xia, LI Lianchao, LÜ Haipeng, LIN Zhi
    Journal of Tea Science    2024, 44 (2): 299-315.   DOI: 10.13305/j.cnki.jts.2024.02.009
    Abstract339)      PDF(pc) (2075KB)(440)       Save
    ‘Rattan tea’ is a unique tea in Yunnan, named after the distinctive cultivation method developed by local tea farmers over generations which prompts tea tree trunks to resemble rattan in appearance. To investigate the impact of the ‘rattan tea’ pluck management system on tea quality, the one bud and two leaves from rattan tea plantation were collected to produce sun-dried tea, black tea and white tea, and the samples of the same kind of fresh leaves of the modern tea plantation were used as the control. These samples were used for the sensory evaluation and chemical composition analysis. The study shows that the sun-dried tea made from fresh rattan tea leaves exhibits a higher refreshing aroma and stronger taste, while the white tea has a stronger aroma and sweeter taste. In contrast, the black tea from modern tea gardens is characterized by a higher level of sweet aroma and a refreshing taste. The total catechin content in rattan tea was significantly lower than that in modern tea plantations, particularly in rattan white tea (67.11 mg·g-1), which was significantly lower than that of modern tea plantation white tea (84.19 mg·g-1). The content of theanine in rattan sun-dried tea (16.79 mg·g-1) was significantly higher than that in modern tea plantation sun-dried tea (14.69 mg·g-1). Both rattan sun-dried tea and rattan white tea exhibited lower phenol-to-amino acid ratios. A total of 205 primary metabolites were identified, with rattan white tea accumulated a richer profile of sugars. In addition, a total of 127 volatile compounds were detected in all tea samples. Alcohols and esters were the predominant volatile components in different tea types, with rattan white tea exhibiting significantly higher total volatile compound content than modern tea plantation white tea. Rattan black tea contained a higher content of geraniol, while modern tea plantation black tea had higher levels of linalool. In summary, the processing methods of sun-dried tea and white tea were found to be more conducive to obtain high-quality rattan tea products, and the overall chemical quality of tea samples made from rattan tea plantation were better than that of tea samples from modern tea plantation.
    Reference | Related Articles | Metrics
    Acid-assisted Improvement of Dispersive Solid Phase Extraction for Rapid Detection of Pesticide Residues in Tea
    WU Zhenghao, ZHENG Qinqin, HAO Zhenxia, WANG Chen, CHEN Hongping, LU Chengyin
    Journal of Tea Science    2023, 43 (3): 389-398.   DOI: 10.13305/j.cnki.jts.2023.03.008
    Abstract331)      PDF(pc) (774KB)(438)       Save
    The false-positive results encountered in the rapid detection of pesticide residues in tea samples are primarily caused by matrix interference. However, limited by the physical and chemical properties of tea matrix components (e.g., caffeine), the development of pretreatments suffers major dilemmas in matrix removal effectiveness. In current work, a novel pretreatment method for tea samples was proposed by developing specific removal procedures based on the molecular structure characteristics of the main matrix components. On the basis of conventional pretreatment for tea samples, the novel method introduced acid solutions and polyvinylpolypyrrolidone adsorbents, which reduced the matrix effect of tea sample detection significantly with a high matrix removal rate of more than 99.99%. Under the assistance of the current pretreatment, the rapid detection of methomyl and carbofuran residues in tea samples was successfully achieved accurately. The limits of detection for carbofuran and methomyl in tea were 0.57 mg·kg-1 and 0.20 mg·kg-1, respectively.
    Reference | Related Articles | Metrics
    The Mechanism and Research Progress of Epigallocatechin Gallate in Improving Non-alcoholic Fatty Liver Disease
    CHEN Jiaxin, ZHANG Jinjia, ZUO Huiling, JIAO Yuhang, SHI Anhua
    Journal of Tea Science    2024, 44 (4): 543-553.   DOI: 10.13305/j.cnki.jts.2024.04.003
    Abstract384)      PDF(pc) (655KB)(437)       Save
    The incidence of nonalcoholic fatty liver disease (NAFLD) is increasing year by year and there is no specific drug available. The active ingredient of green tea, epigallocatechin gallate (EGCG), has been widely proven to have a favorable ameliorative effect on NAFLD in the low dose range. Some of the mechanisms by which EGCG delays the development of NAFLD through anti-oxidative stress, anti-inflammation, inhibition of iron death, reduction of lipogenesis, up-regulation of autophagy, modulation of intestinal flora, and reduction of bile acid metabolism were summarized in this paper, so as to provide insights for in-depth research on improving NAFLD.
    Reference | Related Articles | Metrics
    Quantitative Analysis of Tea Leaf Serration Morphological Characteristics Based on Image Analysis
    TANG Min, ZHONG Qitian, XU Jin, XIAO Fuliang, LI Jie, ZHAI Xiuming, HOU Yujia, GU Yu
    Journal of Tea Science    2023, 43 (6): 835-843.   DOI: 10.13305/j.cnki.jts.2023.06.004
    Abstract330)      PDF(pc) (970KB)(436)       Save
    The size, shape, and arrangement of tea leaf serrations are important criteria for assessing and evaluating tea germplasm resources. However, for a long time, the determination of these criteria has mainly relied on the experience of technicians, resulting in subjective judgments and uncertainties. In this study, a custom convolutional operator based on the geometric morphological features of leaves was introduced, and the existing image recognition algorithms were optimized. A quantification method for tea leaf serrations based on leaf image analysis was proposed. Through experimental validation, the results show that this method can rapidly and accurately obtain basic parameters such as leaf area, perimeter, and number of serrations. It can also quantify descriptive indicators such as serration sharpness, serration depth, and serration density using custom operators. The coefficients of variation for the quantified results are all less than 1%, indicating strong repeatability and high stability. Compared to manual subjective identification, the measurement time of this method does not exceed 30 s, effectively enhancing the accuracy and efficiency of evaluating the morphological characteristics of tea leaf serrations. It provided a new approach and perspective for the quantitative evaluation of tea germplasm resources.
    Reference | Related Articles | Metrics
    Effects of Different Temperature Hot Air Withering on Withered Leaves and Tea Quality of Black Tea
    ZHANG Xianglin, LING Zhihui, HU Weixia, XIANG Chunhui, CUI Lidan, XU Wei, XIAO Wenjun
    Journal of Tea Science    2024, 44 (3): 483-492.   DOI: 10.13305/j.cnki.jts.2024.03.007
    Abstract309)      PDF(pc) (356KB)(429)       Save
    Based on the traditional black tea processing technology, the hot air withering process was used to replace the traditional indoor natural withering process on the basis of the traditional black tea processing technology. The effects of four hot air withering processes of 35 ℃, 45 ℃, 55 ℃ and 65 ℃ on the quality of summer and autumn black tea were studied and analyzed from three aspects of sensory quality, taste quality and aroma quality. The results show that compared with 25 ℃ traditional indoor natural withering black tea, the comprehensive sensory quality of black tea processed by 45 ℃ hot air withering process was better. The color of dry tea was dark brown and moist, the soup color was red and bright, the taste was mellow and refreshing, and the quality characteristics was sweet aroma. At the same time, the contents of tea polyphenols, gallic acid, EGCG, theaflavins, thearubigins and the ratio of the sum contents of theaflavins and thearubigins to the content of theabrownins (TFRB) significantly increased (P<0.05), while the content of soluble sugar decreased significantly (P<0.05). The types of aroma quality components increased, among which alcohols accounted for the highest proportion (70.47%), and the relative contents of alcohols, ketones and esters increased significantly (P<0.05), while pyrroles and aldehydes decreased significantly (P<0.05). And the aroma components with flower and fruit aroma such as trans-3-hexenol, 2,3-dihydro-2,2,6-trimethylbenzaldehyde and α-ionone were detected. This shows that hot air withering with appropriate temperature is conducive to improving the quality of black tea, which can be applied to the production practice of improving the quality of black tea in summer and autumn.
    Reference | Related Articles | Metrics
    Genomic Characteristics, Codon Preference, and Phylogenetic Analysis of Chloroplasts of Camellia sinensis cv. ‘Damianbai’
    YIN Minghua, ZHANG Jiaxin, LE Yun, HE Fanfan, HUANG Tianhui, ZHANG Mutong
    Journal of Tea Science    2024, 44 (3): 411-430.   DOI: 10.13305/j.cnki.jts.2024.03.009
    Abstract210)      PDF(pc) (1268KB)(428)       Save
    ‘Damianbai’ was approved as a national tea cultivar by the National Crop Variety Approval Committee in 1985, but its origin and evolutionary relationship with other tea resources are still unclear. Using ‘Damianbai’ as the experimental material, high-throughput sequencing technology was used to sequence, assemble and annotate the entire chloroplast genome of ‘Damianbai’. In order to provide a basis for studying its phylogenetic evolutionary relationship, bioinformatics software was used to analyze the characteristics, phylogeny, and codon preference of its chloroplast genome. The results show that the chloroplast genome of the tea cultivar ‘Damianbai’ had a total length of 157 129 bp and was a typical tetrad structure, including 1 LSC region (86 687 bp), 1 SSC region (18 282 bp), and 2 IR regions (including IRa and IRb, both of which were 26 080 bp). A total of 135 functional genes were annotated in the chloroplast genome of ‘Damianbai’, including 90 CDS genes, 8 rRNA genes, and 37 tRNA genes. A total of 52 SSRs and 50 Longrepeat sequences were detected in the chloroplast genome of ‘Damianbai’. The SSRs had only A/T single nucleotide repeat sequences, while Longrepeat sequences had only two types: forward repeat and palindrome repeat. The codon usage bias in the chloroplast genome of tea cultivar ‘Damianbai’ was mainly influenced by natural selection, and was less affected by internal mutation pressure. The chloroplast gene of tea cultivar ‘Damianbai’ had 14 optimal codons (AAU, GAU, UGU, AAA, UAA, GCA, GCU, GGU, CCU, GUA, CGU, CUU, AGU, UCU). The Camellia sinensis cv. ‘Damianbai’ had a close genetic relationship with Camellia sinensis isolate Baiyin cultivar Phoenix Dancong Tea (OL690374). This study analyzed the chloroplast genome sequence characteristics and phylogenetic relationships of ‘Damianbai’, which provided a reference basis for strengthening the identification of tea cultivar ‘Damianbai’ and the development and utilization of its resource diversity.
    Reference | Related Articles | Metrics
    Mechanism of Dark Tea Water Extract in Regulating Autophagy in Non-Alcoholic Fatty Liver via the AMPK/mTOR Signaling Pathway
    LI Linli, XIA Xuting, SHI Min, GE Jun, MAO Caiwei, YU Changhong, LIU Fulin
    Journal of Tea Science    2024, 44 (2): 329-340.   DOI: 10.13305/j.cnki.jts.2024.02.012
    Abstract234)      PDF(pc) (1798KB)(427)       Save
    This study aimed to investigate the intricate mechanisms underlying the modulatory effects of Anhua dark tea on autophagy to ameliorate steatosis induced by a high-fat and high-sucrose diet (HFHS) in mice with non-alcoholic fatty liver disease (NAFLD). Male C57BL/6J mice were divided into different groups, including a normal group, a model group, a Western medicine group (10 mg·kg-1), and various doses of dark tea groups (0.75, 1.5, 3.0 g·kg-1). The therapeutic regimen was administered concurrently with the modeling process for a duration of 10 weeks using the HFHS-induced NAFLD model. At the end of the experiment, liver indices, blood lipids, liver function, liver pathology indicators, autophagy markers, and expression levels of key genes in the autophagy-related signaling pathway were assessed. Comparative analyses with the normal group revealed significant increases in liver index and levels of serum cholesterol (CHO), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST), and alanine aminotransferase (ALT), as well as a substantial reduction in high-density lipoprotein cholesterol (HDL-C) levels in the model group. The liver of the mice exhibits signs of steatosis, characterized by an abundance of lipid droplets of different sizes. Protein expression analysis reveals a marked decrease in the levels of microtubule-associated protein light-chain-3B (LC3B), Bcl-2-interacting coiled-coil protein 1 (Beclin1), and phosphorylated adenosine monophosphate-activated protein kinase/adenosine monophosphate-activated protein kinase (p-AMPK/AMPK). Conversely, there was a significant increase in the levels of sequestosome-1 (p62) and phosphorylated mammalian target of rapamycin/mammalian target of rapamycin (p-mTOR/mTOR). Compared to the model group, gavage with dark tea decreased the liver index, serum levels of CHO, TG, LDL-C, AST, ALT, p62, and p-mTOR/mTOR in NAFLD mice, and increased serum HDL-C, along with LC3B, Beclin1, and p-AMPK/AMPK protein levels. The improvements were confirmed by tissue staining results and observations using transmission electron microscopy. In summary, our findings suggest that dark tea, by activating the AMPK/mTOR signaling pathway, may regulate autophagy, thereby alleviating hepatic steatosis and improving non-alcoholic fatty liver disease (NAFLD).
    Reference | Related Articles | Metrics
    Exploring the Potential Mechanism of Hypoglycemic Effect of Fungus Fermented Black Tea Based on Liver Transcriptomics
    ZENG Hongzhe, PENG Liyuan, WAN Liwei, LIU Changwei, FANG Wenwen, WANG Kuofei, ZHANG Xinyi, WEN Shuai, HUANG Jian'an, LIU Zhonghua
    Journal of Tea Science    2023, 43 (5): 645-656.   DOI: 10.13305/j.cnki.jts.2023.05.003
    Abstract444)      PDF(pc) (2294KB)(421)       Save
    EGCG is often regarded as the main active ingredient in tea to protect blood glucose homeostasis. The content of low molecular weight polyphenols such as EGCG in fungus fermented black tea (FFBT) is extremely low, and there are few studies on the hyperglycemic effect of FFBT. To explore the hypoglycemic effects and potential mechanisms of FFBT, GK rats with spontaneous hyperglycemic were given 280 mg·kg-1 FFBT extract (equivalent to 9 g of FFBT for daily human consumption) by gavage intervention. The study assessed the effects of FFBT on body weight, glucose homeostasis, regulatory factors related to glucose homeostasis, diabetic complications and liver transcription profiles in hyperglycemic rats. The results indicated that FFBT could obviously reduce the fasting blood glucose level and random blood sugar level of hyperglycemic rats, improve the abnormal glucose metabolism in hyperglycemic rats, maintain glucose homeostasis and alleviate the damage caused by diabetic complications in hyperglycemic rats. In addition, transcriptome analysis revealed that the hypoglycemic properties of FFBT might be related to the regulation of gene expression in the liver, such as Gck, Pklr, Pkm. This study found that FFBT may be a potential hypoglycemic functional beverage, providing a theoretical basis for the development and utilization of fermented tea such as FFBT.
    Reference | Related Articles | Metrics
    Does Digital Capital Influence Consumers to Increase Online Tea Purchases? An Empirical Analysis Based on 4 090 Consumer Samples
    GAO Feng, XU Jianghong, CHEN Fuqiao
    Journal of Tea Science    2023, 43 (6): 870-880.   DOI: 10.13305/j.cnki.jts.2023.06.001
    Abstract378)      PDF(pc) (593KB)(417)       Save
    With the rapid development and widespread application of digital technology, consumer digital capital continues to accumulate, profoundly influencing their choice of shopping channels. Based on survey data from 4 090 tea consumers within the National Tea Industry Technical System, this study measured the consumer digital capital index and employed the ordinary least squares (OLS), instrumental variable (IV), and propensity score matching (PSM) methods to examine the impact of digital capital on consumers' online tea purchases. The research further explored the heterogeneity of this influence across consumers with different characteristics and delved into the moderating effect of digital technology security within this context. It was found that: (1) An increase in consumer digital capital led to higher expenditures on online tea purchases. (2) The impact of digital capital was more pronounced in young people, higher-income groups, and consumers who buy tea for personal consumption. (3) The decision security of digital technology played a positive moderating role in the relationship between digital capital and online tea purchases, particularly transaction security. However, the moderating effect of information security was not significant. In summary, the increase in consumer digital capital is the trend. Tea enterprises should seize the opportunities presented by digital transformation and actively establish online sales channels. The government should provide comprehensive support in terms of policies, funding, and technology for the digital transformation of tea enterprises. Simultaneously, there should be increased supervision of online sales markets to maintain quality and safety, creating a salubrious and well-ordered online tea trading market environment.
    Reference | Related Articles | Metrics
    Antagonistic Activity and Utilization of Bacillus velezensis Strain YJK1 as A Biocontrol Agent Against Anthracnose on Camellia sinensis
    TANG Zhaoyang, KONG Liya, HU Qian, SONG Qiujin, HE Luqian, LOU Jun, WANG Zhanqi, HE Yan, ZHANG Liqin, MIN Lijing
    Journal of Tea Science    2024, 44 (3): 443-452.   DOI: 10.13305/j.cnki.jts.2024.03.005
    Abstract194)      PDF(pc) (4070KB)(410)       Save
    The tea industry is one of China's important agricultural economic resources. However, widespread outbreaks of anthracnose on Camellia sinensis pose a significant threat to the sustainability of the tea industry. Conventional approaches based on chemical pesticides face inherent challenges, including pesticide residue accumulation and environmental pollution. In this study, the biological control effect of Bacillus velezensis YJK1 on tea tree diseases was evaluated. The results demonstrat that the YJK1 isolate exhibited robust antagonistic activity against fungal diseases affecting tea trees, particularly against pathogens such as Colletotrichum camelliae, Colletotrichum fructicola and Fusarium fujikuroi. YJK1 fermentation diluent has a significant inhibitory effect on the spores of C. camelliae and C. fructicola. The inhibitory effects of YJK1 fermented liquid on the diameter of C. camelliae were evaluated with the detached tea leaves. YJK1 fermented liquid effectively prevented tea tree anthracnose with 78.1% control when applied 24 h before C. camelliae inoculation and 61.8% during simultaneous inoculation. However, its efficacy was limited (post-inoculation). The YJK1 fermentation broth has a broad-spectrum of activity against various fungi. The antagonistic activity of the fermented liquid was stable below 80 ℃. After 60 min of UV treatment, the inhibition rate was still above 50%. And after treatment with different pH values, there was no significant difference in the inhibition rate within the pH range of 5-11. These findings suggest that B. velezensis YJK1 is a promising biocontrol agent for the management of tea plant diseases.
    Reference | Related Articles | Metrics
    Study on the Impact of Standards Differences in Pesticide Maximum Residue Limits on the Trade Efficiency of RCEP Members Exporting Tea from China: Based on the Stochastic Frontier Gravity Model
    HUO Zenghui, LIU Chang, ZHANG Mei, CHEN Fuqiao, LIU Zhonghua
    Journal of Tea Science    2024, 44 (3): 526-542.   DOI: 10.13305/j.cnki.jts.2024.03.006
    Abstract281)      PDF(pc) (962KB)(385)       Save
    Currently, tea trade is facing challenges from technical trade barriers. This study used the standards differences in pesticide maximum residue limits (MRLs) as the entry point to construct The Heterogeneity Index of Trade (HIT) to quantify the specific differences in pesticide MRLs between countries. The stochastic frontier gravity model was used to study the impact of standards differences in pesticide MRLs on the trade efficiency of RCEP members exporting tea from China. The results show that there are differences in the pesticide MRLs standards between China and RCEP members, but overall there is a decreasing trend. The negative differences in pesticide MRLs standards between China and RCEP members will lead to a reduction in the trade efficiency of China's tea exports. The inhibitory effect path is manifested by significantly reducing tea export volume and export unit price. China's pesticide MRLs standard system should be further improved to align with international standards, promote mutual recognition of standards among countries in the RCEP region, and reduce the adverse effects of trade barriers.
    Reference | Related Articles | Metrics
    Effect of Jiukeng Longjing Tea on SREBPs Signaling Pathway and Gut Microbiota Regulation in High-fat Diet C57BL/6 Mice with Hepatic Steatosis
    GONG Mingxiu, YUAN Yiwei, ZHANG Yifan, YE Jiangcheng, GUO Li, LI Xiaojun, HUANG Hao, MAO Yuxiao, ZHAO Yun, ZHAO Jin
    Journal of Tea Science    2023, 43 (4): 576-592.   DOI: 10.13305/j.cnki.jts.2023.04.010
    Abstract427)      PDF(pc) (2452KB)(385)       Save
    To investigate the effect of Jiukeng Longjing tea water extract (LJT) on liver steatosis and the regulation of gut microbiota in C57BL/6 mice fed with high-fat diet, a non-alcoholic fatty liver model was established in mice induced by a high-fat diet, and LJT (300 mg·kg-1) was gavaged for intervention. The body weight of mice was recorded regularly, and serum biochemical indicators such as AST, ALT, TC, TG, LDL-C, HDL-C, and glucose tolerance levels were measured. The characteristics of HE staining and oil red O staining liver tissue sections were observed and analyzed. Real-time qPCR technology was used to detect the expressions of seven genes including SREBP-1c, FAS, SCD-1, ACC-1, SREBP-2, HMGCR, and PPARγ in mouse liver tissues. The relative expressions of proteins related to lipid metabolism were studied by western blot. At the same time, the gut microbiota of mice was sequenced by high-throughput sequencing (16 S rDNA) and its structure was analyzed. The results show that the body weight, blood glucose AUC, serum TG, TC, LDL-C, and liver TG, TC levels significantly decreased under LJT intervention. Western blot shows that LJT intervention reduced the expressions of SREBP-1c, FAS, ACC-1, SCD-1, and PPARγ in liver tissue of mice. LJT also significantly downregulated the relative expressions of SREBP-1c, SCD-1, FAS, ACC-1, SREBP-2, HMGCR and PPARγ in liver tissue. The 16 S rDNA detection reveals that the levels of gut microbiota were mainly classified into four categories: Firmicutes, Bacteroidota, Desulfobacterota, and Actinobaciota. LJT could effectively alleviate the trend of increasing the relative abundance of Firmicutes and decreasing the relative abundance of Bacteroidota caused by high-fat diet, and increase the species abundance of gut microbiota. Therefore, LJT could interfere with the signal expression of SREBPs pathway in mouse liver steatosis, and improve the disturbance of gut microbiota in mice, thereby achieve the effect of reducing fat and weight loss.
    Reference | Related Articles | Metrics
    Identification and Expression Pattern Analysis of STOP Gene Family in Tea Plants (Camellia sinensis)
    LONG Lu, TANG Dandan, CHEN Wei, TAN Liqiang, CHEN Shengxiang, TANG Qian
    Journal of Tea Science    2024, 44 (3): 386-398.   DOI: 10.13305/j.cnki.jts.2024.03.001
    Abstract233)      PDF(pc) (792KB)(384)       Save
    STOP (Sensitive to proton rhizotoxicity) is a type of C2H2 zinc finger transcription factor, and it plays an important regulatory role in various stress tolerance mechanisms in higher plants. A total of 6 STOP genes were identified based on the whole genome data of tea plant (Camellia sinensis), and analyzed by bioinformatics and real-time fluorescence quantitative PCR. The results show that the six CsSTOP genes encoded 376-505 amino acids, their molecular weights were 42.17-56.36 kDa, and their theoretical isoelectric points were 5.53-8.85, all of which were unstable proteins. Conserved domain analysis of the proteins shows that they all contained zf-C2H2 conserved domain. Phylogenetic analysis shows that tea plant has high homology with Arabidopsis, Citrus sinensis and Nicotiana tabacum. Cis-acting element analysis of the promoter shows that CsSTOPs contain many elements related to growth and development, hormone response and abiotic stress. Transcriptome data analysis of different tissues shows that the expression level of CsSTOP1 was the higher in roots, fruits and mature leaves, the expression level of CsSTOP2 was the higher in young leaves, the expression level of CsSTOP3 was the higher in old leaves, and the expression levels of CsSTOP4 and CsSTOP5 were low in all tissues. The expressions of different CsSTOP genes were induced by PEG-induced drought stress, salt stress, methyl jasmonate stress and cold stress, indicating that CsSTOP genes were involved in the regulation of growth and development of tea plants and response to abiotic stress. Fluorescence quantitative PCR detection shows that the expression levels of CsSTOPs, CsGS1s and CsGDHs in leaves and roots of 'Emeiwenchun' treated with high NH4+ concentration (4.5 mmol·L-1) were higher than those in the control treatment (CK). Particularly, the expression levels of CsSTOPs, CsGS1.1, CsGS1.3 and CsGDH2 were significantly higher than CK in leaves treated with high NH4+ concentration. In this study, the basic characteristics and functions of CsSTOPs were preliminarily analyzed, and it was found that CsSTOPs could coordinate with CsGS1s and CsGDHs genes to regulate the process of tea plant adaptation to high NH4+ environmental availability.
    Reference | Related Articles | Metrics
    Effects of Phosphate Solubilizing Bacteriaand Phosphate-solubilizing and Nitrogen-fixing Bacteria on Selenium and Zinc Contents in Selenium-rich Soil and Camellia sinensis Seedlings in Guizhou
    ZHANG Shuqing, GUO Jinmei, LI Jianfeng, WU Ling, WANG Xi, ZENG Zhengqun
    Journal of Tea Science    2024, 44 (3): 431-442.   DOI: 10.13305/j.cnki.jts.2024.03.011
    Abstract218)      PDF(pc) (635KB)(371)       Save
    In order to investigate the effects of phosphate solubilizing bacteria and phosphate-solubilizing & nitrogen-fixing bacteria on the content of available selenium (Se) and zinc (Zn) in selenium-rich soil and Camellia sinensis, two strains of endogenous phosphate solubilizing bacteria (Paraburkholderia fungorum PSt07, Kluyvera intermedia PSt12) and two endogenous phosphate-solubilizing & nitrogen-fixation bacteria (Paraburkholderia fungorum PMS05, Kluyvera intermedia PCF06) were used as the research object, and 2 year old tea seedlings of ‘Longjing43’ and ‘Huangjinya’ and Se-rich red soil of Kaiyang County, Guizhou Province were used as the test materials. Soil incubation and pot experiment of tea seedlings were carried out. After 60 days of inoculation with each bacterial solution, Se and Zn contents in tea seedlings and available nutrients of nitrogen (N), phosphorus (P), potassium (K), Zn, Se in soil were tested. The results show that the tested strains could increase the content of available P in rhizosphere soil of two tea seedlings, and the content of available N in rhizosphere soil of ‘Longjing43’. Under the treatment of phosphate solubilizing bacteria, the content of available Se and Zn in rhizosphere soil and Se in root tissue of ‘Longjing43’ tea seedlings were increased by 191.83%-573.08%, 37.48%-65.88% and 24.27%-39.73% respectively. The accumulation of Zn in the leaves of the two tea seedlings was increased by 41.23%-247.65% (P<0.05). The contents of available Zn in the rhizosphere soil of potted plants under the treatment of two strains of phosphate solubilizing bacteria were higher than those in the soil incubated with bacteria solution alone without tea plants, indicating that the combined effect of tea plants and phosphate solubilizing bacteria could significantly improve the availability of Zn in soil. The phosphate-solubilizing & nitrogen-fixing bacteria were more beneficial than the phosphate solubilizing bacteria to increase the Se content of ‘Huangjinya’ root tissue and the available Se content of rhizosphere soil, and PMS05 could significantly increase the content of available Se in rhizosphere soil by 602.00% (P<0.05). The accumulation of Se and Zn elements in tea varied greatly from different combinations of strains and tea cultivars. In practical application, the optimal phosphorus solubilizing strain should be selected for different tea cultivars after completing the strain selection and fertilizer efficiency verification experiment.
    Reference | Related Articles | Metrics
    Response of γ-Aminobutyric Acid Metabolic Pathway in Tea Plants to Early Infestation of Ectropis obliqua
    SUN Juan, CHEN Hui, LIU Guanhua, ZHANG Han, HUANG Fuyin, WANG Yuxi, WANG Nuo, BAO Demeng, SHI Jiang, DAI Weidong, CHEN Jian, FU Jianyu
    Journal of Tea Science    2024, 44 (5): 816-830.   DOI: 10.13305/j.cnki.jts.2024.05.008
    Abstract155)      PDF(pc) (1506KB)(370)       Save
    Tea geometrid (Ectropis obliqua Prout) infestation induces tea plants to release massive amounts of volatile organic compounds (VOCs), which are widely reported as important chemical cues that either repel the pests or attract their enemies. However, the spatial variations and the roles of the non-volatile metabolites in tea leaves infested by the tea geometrids are confusing. Taking tea leaves as materials, the feeding of E. obliqua was limited at the leaf tip, and then the tissues at the leaf tip, middle and base were collected. The non-volatile metabolites of the tissues at the three sites were identified and analyzed by ultra-high performance liquid chromatography-quadrupole orbitrap mass spectrometry (UHPLC-Q-Exactive/MS). The results demonstrate that compared with the blank control and mechanical injury tea leaves, tea geometrids induced 11 differential metabolites, including six dimeric catechins, three amino acids (including γ-aminobutyric acid), one flavonoid and flavonoid glycoside, and one phenolic acid compound. After the infestation of the tea geometrids, the relative contents of γ-aminobutyric acid at the three sites in tea leaves were significantly increased compared to the blank control tea leaves, and increased by 1.99-fold in the middle and base of leaves. In addition, the key genes involved in the γ-aminobutyric acid biosynthetic pathway were upregulated at all three sites of tea leaves. There was a significant positive correlation between the relative content of γ-aminobutyric acid and the relative content of glutamic acid (P<0.05). When the tea geometrids were fed with artificial diet supplemented with 0.2 mg·g-1, 0.5 mg·g-1 and 2.0 mg·g-1 γ-aminobutyric acid, their body weight and length were both significantly decreased compared with the control (P<0.05). The present study indicates that the inhibitory neurotransmitter γ-aminobutyric acid plays a pivotal role in the early defense response against tea geometrids, which will shed light on the biochemical resistance mechanism of the tea plants.
    Reference | Related Articles | Metrics
    Genetic Analysis and Marker Development for Wuyi Tea (Camellia sinensis, Synonym: Thea bohea L.) Based on GBS-SNP
    LI Li, LUO Shengcai, WANG Feiquan, LI Xiangru, FENG Hua, SHI Yutao, YE Jianghua, LIU Fei, ZHAO Jialin, LI Shuying, ZHANG Bo
    Journal of Tea Science    2023, 43 (3): 310-324.   DOI: 10.13305/j.cnki.jts.2023.03.001
    Abstract430)      PDF(pc) (4730KB)(367)       Save
    In order to understand the genetic diversity background of Wuyi tea (Camellia sinensis, Synonym: Thea bohea L.), 126 Wuyi tea cultivars/strains and 223 elite tea cultivars/strains (a total of 349 tea germplasm resources) from 12 different regions were collected. Genotyping by sequencing (GBS) technology was used to screen 973 high-quality core SNPs for genetic diversity and background analysis. Model-based structure (Structure), phylogenetic tree construction (NJ-tree) and principal component analysis (PCA) show that the 349 tea resources could be divided into 5 subgroups, and the clustering of subgroups was mainly based on the genetic relationship between tea resources, rather than morphological characteristics such as tree type or leaf shape. Gene flow analysis shows that Wuyi tea might have spread from southern Fujian Province to Wuyi Mountain in northern Fujian Province and from Wuyi Mountain to Zhejiang Province. Genetic similarity analysis shows that among 349 tea cultivars/strains, 136 pairs of cultivars/strains had genetic similarity greater than 0.9, among which 26 pairs involved Wuyi tea. Based on the results of gene flow and genetic similarity, the genetic relationship and background of some representative and controversial Wuyi tea were discussed and analyzed. Furthermore, through the discernibility analysis of pairwise comparison, 21 SNPs were selected from 973 SNP markers that can 100% identify 349 tea cultivars/strains, among which 18 SNPs could 100% identify 126 Wuyi tea cultivars/strains. Genetic fingerprints were established and identification primers were developed. These results provided valuable information for the management and breeding of Wuyi tea in the future.
    Reference | Related Articles | Metrics
    Alleviative Effects of Aged Fu Brick Tea on Lipid Metabolism in Hyperlipidemic Mice
    KE Wanping, LIU Zhenyun, LI Menghua, ZHOU Xirui, GUO Xiaoli, ZHANG Sheng, HUANG Jian′an, LIU Zhonghua, XIAO Lizheng, LIN Yong
    Journal of Tea Science    2024, 44 (4): 683-693.   DOI: 10.13305/j.cnki.jts.2024.04.008
    Abstract201)      PDF(pc) (1448KB)(351)       Save
    To investigate the preventive effect of Fu brick tea with different years on high-fat diet-induced obesity and hyperlipidemia, this experiment was conducted with C57BL/6J mice, and Fu brick tea aged for 1 and 10 years were used as representative tea samples. The normal diet group (ND), high-fat diet group (HFD), and Fu brick tea with different ageing time (10Y, 1Y) were set up. The analysis of bioactive components of the tea samples reveals a significant increase in the contents of theabrownin and soluble sugars, and a significant decrease in polyphenols and catechin monomers in Fu brick tea aged for 10 years. Animal test results show that Fu brick tea aged for 1 year and 10 years were effective in reducing liver and serum lipid levels, body weight gain, organ coefficients and adipose tissue weights compared to the HFD group, and that Fu brick tea aged for 10 years had a relatively significant effect. Liver and adipose tissue sections show that Fu brick tea supplementation reduced the formation of lipid droplets and the appearance of vacuoles in the liver, as well as inhibited adipocyte expansion. In addition, Fu brick tea supplementation ameliorated inflammation and hepatic oxidative stress caused by a high-fat diet. Compared with Fu brick tea aged for 1 year, Fu brick tea aged for 10 years significantly reduced the levels of the inflammatory factors IL-6 and TNF-α, as well as the liver injury indicators (AST and ALT viabilities), while significantly up-regulating the hepatic GSH content (P<0.05). This may be a result of the richness of theabrownin in 10-year aged Fu brick tea and its co-action with other active ingredients.
    Reference | Related Articles | Metrics
    Identification and Tissue Expression Analysis of Sucrose Transporter (SUT) Gene Family in Camellia sinensis
    LUO Wei, ZHANG Jiaqi, YANG Ni, HU Zhihang, HAO Jiannan, LIU Hui, TAN Shanshan, ZHUANG Jing
    Journal of Tea Science    2024, 44 (4): 585-597.   DOI: 10.13305/j.cnki.jts.2024.04.002
    Abstract237)      PDF(pc) (2445KB)(348)       Save
    Sucrose transporters (SUTs), the main sucrose carriers, consume energy to transport and load sucrose, which play a key role in the transport of plant photosynthetic products from source to sink. In this study, seven members of CsSUTs family were identified from Camellia sinensis ‘Shuchazao’ by bioinformatics analysis. Their physical and chemical properties, gene structure, subcellular localization, evolutionary relationship and cis-acting elements were analyzed. The identified CsSUT proteins, containing a conserved MFS-2 domain, are closely related to AtSUC proteins in Arabidopsis thaliana, which are clustered in SUTⅠ, Ⅱ and Ⅳ. AtSUC proteins of Arabidopsis thaliana were used as a model in the STRING online website to speculate that there might be a direct interaction between CsSUT proteins and SWEET, SUS and STP proteins. Analysis of the promoter regions of the CsSUT family genes in tea plants reveals that there were masses of cis-acting elements related to hormone response, abiotic stress, and plant growth and development. It is speculated that these promoters may be regulated by plant hormones, stress and other factors, thus affecting the growth and development of tea plants. There were differences in the expression patterns of CsSUT family genes in C. sinensis ‘Longjing 43’ and C. sinensis ‘Shuchazao’. CsSUT6 was highly expressed in flowers, suggesting that it may contribute to the supply, storage and distribution of sucrose in floral organs. CsSUT1 and CsSUT5 were highly expressed in various organs of tea plants, indicating that they may synergistically participate in the process of sucrose loading in ‘ source’ leaves and unloading in ‘sink’ organs.
    Reference | Related Articles | Metrics
    Study on the Effects of Puerins Ⅴ-Ⅶ on Four Kinds of Breast Cancer Cells
    YANG Rui, ZHAO Xingping, HE Mingjie, LIU Min, LUO Rong, CHEN Chuanlong, PAN Shukang, DING Zhanggui
    Journal of Tea Science    2024, 44 (3): 501-514.   DOI: 10.13305/j.cnki.jts.2024.03.004
    Abstract192)      PDF(pc) (3445KB)(347)       Save
    Puerins, a kind of nitrogen-containing polyphenol compound with unique structure, is a kind of catechin derivative first isolated from ripened Pu-erh tea. In this paper, the effects of puerins Ⅴ-Ⅶ on breast cancer cells were studied. Four breast cancer cell lines with different receptor phenotypes were used as models, and MTT assay, proteomics detection and apoptosis detection were carried out. The results show that all puerins Ⅴ, Ⅵ and Ⅶ had obvious inhibitory effects on the four kinds of breast cancer cells. Proteomics analysis indicates that the differentially expressed proteins were mainly concentrated in the metabolic pathway, followed by cancer pathway and adhesion spot signal pathway under the intervention of puerins Ⅴ-Ⅶ. Apoptosis detection demonstrates that all three puerins compounds could induce the apoptosis of MDA-MB-231 cells. This study first reported the anti-breast cancer activity and preliminary mechanism of puerins Ⅴ-Ⅶ, which provided basic information for studying the anti-cancer active substances of ripened Pu-erh tea.
    Reference | Related Articles | Metrics
    Study on the Synthetic Site of Caffeine in Different Etiolated Tea Germplasms
    ZHANG Yazhen, ZHONG Sitong, CHEN Zhihui, KONG Xiangrui, SHAN Ruiyang, ZHENG Shiqin, YU Wenquan, CHEN Changsong
    Journal of Tea Science    2024, 44 (4): 575-584.   DOI: 10.13305/j.cnki.jts.2024.04.011
    Abstract278)      PDF(pc) (2017KB)(337)       Save
    As the main characteristic metabolite in tea plants, caffeine contributes to tea quality and flavor formation and is a natural functional component. Its function, distribution, biosynthetic pathway and related key genes in tea plants have been basically identified, but its synthetic site at subcellular level needs to be further clarified. In this study, ‘Baijiguan’ and its half-sib offsprings with different etiolated leaves were used as materials. The results of transmission electron microscopy show that the chloroplast structures in etiolated leaves were damaged or destroyed, which was closely related to the SPAD value and leaf phenotype. High performance liquid chromatography (HPLC) was used to determine the caffeine content. It was found that there was still a large amount of caffeine accumulation in etiolated leaves, even more than in normal green leaves. Then, the expression and location of CsTCS1, a key gene involved in caffeine synthesis, were studied by real-time PCR, in-situ hybridization and subcellular localization. It was shown that the expression level of CsTCS1 in different etiolated leaves varied obviously. But the expression site was basically consistent, mainly distributed in the nucleus and cytoplasm of palisade tissues. These results reveal that the synthetic site of caffeine at subcellular level in tea leaves were mainly nucleus and cytoplasm, but not chloroplasts.
    Reference | Related Articles | Metrics
    Spatial Transcriptome Sequencing of Shilixiang in Yunnan Province
    WANG Dongxue, MAN Jiaxu, WU Simin, ZHAO Xueting, ZHANG Dongying
    Journal of Tea Science    2024, 44 (3): 399-410.   DOI: 10.13305/j.cnki.jts.2024.03.003
    Abstract202)      PDF(pc) (631KB)(332)       Save
    In recent years, Yunnan's large leaf tea and ancient tea resources have attracted much attention, while there are relatively few reports on the research of small leaf tea resources. Shilixiang, a distinctive small leaf tea resource in Yunnan, possessed unique quality and a long drinking history. Spatial transcriptome technology, an emerging gene expression analysis technique, has not been previously applied to tea resources according to current literature. The gene characterization and spatial regulation mechanism of the tender buds of Shilixiang were researched by spatial transcriptome sequencing technology in this study. The results show that 13 clusters of different cell types in the tender bud cells were identified by a spot clustering analysis and the spatial transcriptome map was constructed. The expression positions of clusters during the two developmental stages of the bud were different and spatial heterogeneity was observed from this analysis. Further exploration involved the identification of differential genes in various cell type clusters, with a focus on stress response and growth and development regulation. Representative stress responsive genes included LOC114312694, LOC114319171, LOC114320792, LOC114287723, LOC114284011 and LOC114289235. Meanwhile, representative growth and development genes included LOC114263486, LOC114320821, LOC114292779, LOC114321117, and LOC114286858. A spatial distribution map illustrated the high expression of these stress response and growth development genes in young leaves, indicating their crucial role in the early stage of tender bud development. Further GO and KEGG enrichment analysis reveal that the differential genes in the tender buds of Shilixiang are associated with multiple important pathways. These pathways included translation, jasmonic acid signal regulation, calcium ion binding, and plant hormone signal transduction, all of which are closely linked to the growth and development of tea plants. The results of this study provided a solid scientific foundation for understanding the developmental biology of Shilixiang. Additionally, they provided a new perspective for exploring other tea resources.
    Reference | Related Articles | Metrics
    The Development of CAPS Molecular Markers for CsAL1, A Gene Associated with Early and Late Spring Tip Emergence in Tea Plants
    HUANG Mengdi, CHEN Lan, SU Qin, HU Jinyu, LIU Guizhi, TAN Yueping, LIU Shuoqian, TIAN Na
    Journal of Tea Science    2024, 44 (2): 207-218.   DOI: 10.13305/j.cnki.jts.2024.02.001
    Abstract278)      PDF(pc) (475KB)(326)       Save
    Camellia sinensis is an economically important foliar plant. The time of spring sprouting is a crucial biological trait that affects the economic value of tea. Therefore, selecting and breeding early sprouting tea cultivars are of great practical significance for improving the quality and economic benefits of tea. The study used ‘Tieguanyin’ as the reference genome and screened a gene, CsAL1 (Auxilin-like 1, TGY040711), which was highly significantly correlated with the time of spring sprouting based on genome-wide association analysis. SNP calling was used to obtain SNPs of CsAL1 in each sample. Correlation analysis of the SNPs and spring sprouting phenotypes was performed to obtain the key SNP loci that associating with spring sprouting traits. Suitable enzyme cleavage sites were analyzed for each SNP to develop CAPS molecular markers related to early-sprouting traits in tea plants. PCR was used to amplify the CAPS molecular markers, which were then digested in the genomic DNA of 12 tea materials. The markers were further verified in 72 tea materials to provide a reference for the association between single-base mutations in CsAL1 and early sprouting traits using CAPS molecular markers. This study also provided theoretical support for the breeding of early sprouting tea cultivars.
    Reference | Related Articles | Metrics
    Physiological Response of Tea Plants Inoculated with Arbuscular Mycorrhizal Fungi under Drought Stress
    LU Wei, WU Xiaolong, HU Xianchun, HAO Yong, LIU Chunyan
    Journal of Tea Science    2024, 44 (5): 718-734.   DOI: 10.13305/j.cnki.jts.2024.05.002
    Abstract235)      PDF(pc) (1468KB)(325)       Save
    To explore the mechanism of arbuscular mycorrhizal (AM) fungi on the growth and physiological characteristics of tea plants under drought stress, tea cultivar ‘Fuding Dabaicha' was used as experimental material to inoculate with or without (Claroideoglomus etunicatum) under well-watered and drought stress. Plant growth performance, photosynthesis, osmotic regulation and stomatal aperture were determined to investigate the effect of AMF on tea seedlings under different duration of DS (4 weeks, 6 weeks and 8 weeks). The results show that under well-watered and drought stress conditions, AMF inoculation significantly promoted plant growth performance, increased the shoot and root biomass, improved the root system architecture, in particularly increased total root length, secondary and tertiary lateral root numbers, and leaf osmotic potential by 20.00%-38.77%, 48.90%-163.33%, 60.00%-442.86%, 29.77%-41.24%, decreased the stomatal density and relative conductance under drought stress by 16.00%-42.37% and 2.21%-6.67% respectively. The effects were more significant under drought stress. Whereas, drought stress significantly inhibited the root AMF colonization and plant growth, as evidenced by impaired establishment of root system architecture, reduced leaf chlorophyll content, maximum light quantum effect (QY_max), leaf relative water content, stomatal aperture and osmotic potential, etc. AMF inoculation could significantly alleviate this inhibitory effect, improve the physiological response of tea plants under drought stress and thus promote tea plant growth. The results indicate that AMF could promote the absorption of water and nutrients, alleviate the damage of drought stress and improve the drought resistance of tea seedlings by improving root morphology, promoting the water retention and photosynthetic capacity, adjusting the stomatal and osmotic balance, and the promotion effect of AMF became more significant with the extension of drought time.
    Reference | Related Articles | Metrics
    The Impact of Organic Fertilizer Replacement of Chemical Fertilizers on Yield and Quality of Tea Gardens in China
    REN Hailong, CHEN Feifan, TAN Qiling, HU Chengxiao, LI Jinxue, WANG Shaomei, LI Xiaojun, MENG Yuanduo, ZHAO Yingjie
    Journal of Tea Science    2024, 44 (4): 598-608.   DOI: 10.13305/j.cnki.jts.2024.04.005
    Abstract396)      PDF(pc) (1017KB)(322)       Save
    In order to explore the effects of organic fertilizer replacement of chemical fertilizers on tea yield, quality, and soil physicochemical properties in China, relevant literature on organic fertilizer replacement of chemical fertilizers in tea gardens was collected both domestically and internationally. Meta analysis was used to quantitatively analyze the effects of organic fertilizer replacement of chemical fertilizers on tea yield, quality, and soil physicochemical properties in China under different organic substitution ratios, soil physicochemical properties and substitution years. The results show that compared with the application of chemical fertilizers alone, partial substitution of organic fertilizer can significantly improve tea yield, quality, and soil nutrient content in tea gardens. The organic substitution ratios, soil conditions, and substitution period are important factors that affect the effectiveness of organic substitution. When the organic substitution ratio was less than 25%, the yield increase effect was the best. When the organic substitution ratio was between 25% and 75%, the best effect was achieved in improving the quality of tea. When the organic substitution exceeded 75%, it would lead to a decrease in tea yield due to insufficient nutrient supply in the soil during the season. Organic substitution had a better effect on increasing tea yield when soil organic matter<20βg·kg-1, alkaline nitrogen<100βmg·kg-1, available phosphorus<5βmg·kg-1, and pH>4.5. When soil organic matter>20βg·kg-1, alkaline nitrogen>100βmg·kg-1, available phosphorus>20βmg·kg-1, available potassium>100βmg·kg-1, and pH<5.5, the tea quality improvement effect was better. There was a cumulative effect of organic fertilizer efficiency, and the longer the organic substitution period, the better the effect on improving tea yield and quality.
    Reference | Related Articles | Metrics
    Analysis of the Regurgitation Effect of New Tea Beverage Consumption Intention on Traditional Tea Consumption
    ZHANG Yi, HU Linying, YI Xiaoyun, CHEN Fuqiao, JIANG Aiqin
    Journal of Tea Science    2024, 44 (5): 853-868.   DOI: 10.13305/j.cnki.jts.2024.05.004
    Abstract349)      PDF(pc) (617KB)(320)       Save
    To a certain extent, new tea beverage is the product of innovation and development based on traditional tea. China's long history of tea drinking provides a wide space for the new tea beverage market. The rich flavor of traditional tea as well as its inclusiveness become the main means of innovation for new tea beverage. Will new tea beverage consumption in turn affect traditional tea consumption? In this research, a theoretical model of new tea beverage consumption influencing traditional tea consumption was established, and the regurgitation mechanism was revealed. Then, using the new tea beverage research data from the Tea Research Institute of the Chinese Academy of Agricultural Sciences, it empirically examined the influence of new tea beverage consumption on traditional tea consumption. This research finds that there is a regurgitation effect of new tea beverage consumption on traditional tea consumption. The mechanism analysis shows that consuming new tea beverage can make consumers develop a traceability psychology and accumulate certain knowledge related to tea, thus promoting consumers' traditional tea consumption intention. The heterogeneity analysis shows that the effects of milk tea series and cheese-foam tea series are more prominent. Young groups with higher health consciousness are more likely to be influenced. The research conclusion helps to understand the ways of cultivating tea consumers through new tea beverage, and also has reference significance for expanding our country's tea consumption.
    Reference | Related Articles | Metrics
    Inductive Effect and Mechanism of EGCG on Beiging of White Adipose Tissue in High-fat Diet-fed GK Rats
    WAN Liwei, ZENG Hongzhe, PENG Liyuan, WEN Shuai, LIU Changwei, BAO Sudu, AN Qin, HUANG Jian'an, LIU Zhonghua
    Journal of Tea Science    2024, 44 (1): 119-132.   DOI: 10.13305/j.cnki.jts.2024.01.008
    Abstract331)      PDF(pc) (1738KB)(316)       Save
    The types of adipose tissue are closely related to human metabolism. Transforming white adipocytes into thermogenic beige adipocytes through dietary or nutritional interventions is a safe strategy to reduce fat accumulation and regulate metabolism. Currently, research on the role of white adipose tissue beiging has mainly focused on obese populations. To explore the effect of EGCG on promoting the beiging of white adipose tissue in non-obese individuals with metabolic disorders and its related mechanisms, this study used non-obese, spontaneously diabetic type 2 GK rats. These rats were fed a high-fat diet and received 40 mg·kg-1 and 80 mg·kg-1 EGCG daily by gavage. In this study, we assessed body weight, food intake, cellular morphology of adipose tissue, gene expression levels associated with beiging, and protein expression levels of UCP1 in GK rats. Additionally, transcriptome sequencing was also performed on epididymal white adipose tissue. The results show that gavage intervention with 80 mg·kg-1 EGCG has no significant effect on the food intake and body weight of GK rats. It induced a trend of beiging in adipocytes towards a multilocular phenotype transformation, characterized by a decrease in cell size and an increase in cell number. Moreover, it significantly upregulated the expression levels of beiging-related genes Pparg, Ppargc1a, Ucp1 and the protein expression level of UCP1.This demonstrates the inducing effect of EGCG on the beiging of visceral epididymal white adipose tissue in high-fat diet-fed GK rats, indicating its potential in the regulation of lipid metabolism. Combined with transcriptome analysis, the results suggest that the induction mechanism of EGCG on the beiging of white adipose tissue in high-fat diet-fed GK rats may be associated with the PPAR signaling pathway, PI3K/Akt, and MAPK signaling pathway.
    Reference | Related Articles | Metrics
    An Empirical Study on the Increase in Purchase Intention of Novel-tea Beverage among Young Consumers: Based on the Perspective of Customer Perceived Value
    YAN Pengxiang, PENG Kang, CHEN Fuqiao, JIANG Renhua
    Journal of Tea Science    2024, 44 (6): 1023-1036.   DOI: 10.13305/j.cnki.jts.2024.06.009
    Abstract399)      PDF(pc) (415KB)(315)       Save
    In recent years, the novel-tea beverage industry has developed rapidly, becoming the third largest form of tea consumption after traditional loose-leaf tea and fast-moving bottled tea. The rapid expansion has intensified competition within the industry, making it crucial to increase customers’ purchase intention and frequency for the long-term healthy development of the industry. This study constructed an analytical model for enhancing the purchase intention of young consumers of novel-tea beverage from the perspective of customer perceived value. Though empirical research based on 1 900 consumer survey data points, the study examined the impact of product innovation, scene experience and brand exposure on customers’ purchase intention. The findings are as follows: (1) Product innovation, scene experience and brand exposure all positively influence customers’ purchase intention. (2) Functional value, experiential value and emotional value enhance the effects of product innovation, scene experience and brand exposure on purchase intention. (3) Product innovation, scene experience and brand exposure all positively affect purchase frequency, though there is some discerpancy between purchase intention and actual purchase behavior. Notably, product innovation plays a significant role in translating purchase intention into actual purchase behavior. Based on these conclusions, it is suggested that novel-tea beverage companies should highlight the uniqueness of product innovation, build interesting scene experiences, and link brand exposure emotions in their operations.
    Reference | Related Articles | Metrics
    The Predatory Ability and Intraspecific Interference Response of Arma chinensis to the Larvae of Ectropis grisescens
    GUO Shibao, CHEN Junhua, ZHANG Long, LI Feifan, LIU Hongmin, SHI Hongzhong
    Journal of Tea Science    2024, 44 (4): 609-617.   DOI: 10.13305/j.cnki.jts.2024.04.007
    Abstract187)      PDF(pc) (425KB)(310)       Save
    To explore the biological control potential of Arma chinensis, a predatory insect, against Ectropis grisescens larvae, the predation and search effect of 4th-5th instar Arma chinensis nymphs and female adults on 3rd-5th instar larvae of Ectropis grisescens were measured in the laboratory, and the intraspecific interference effects of 5th instar Arma chinensis nymphs and female adults were also studied. The results show that both the nymphs and the female adults of the 4th-5th instar Arma chinensis had predatory ability to the larvae of the 3rd-5th instar of Ectropis grisescens, and the functional response equation of predation was in accordance with the Holling Ⅱ model. At different developmental stages of Arma chinensis, the female adults had the highest (33.042) control effectiveness to the larvae of Ectropis grisescens, the second is the 5th instar nymphs (23.222), and the lowest in the 4th instar nymphs (13.219). The female adults had a control effectiveness of 33.042 against the 3rd instar of Ectropis grisescens, the maximum predation of female adults, 5th and 4th instar nymphs of Arma chinensis on the 3rd instar larvae of Ectropis grisescens were 41.499, 37.178 and 31.602. The instantaneous attack rate (0.793) of the female adults of the Arma chinensis on the 3rd instar Ectropis grisescens was the highest, and the prey processing time for was shortest (0.024βd), indicating that the female adult of the Arma chinensis had the strongest potential to prey on the 3rd instar Ectropis grisescens larvae. The search effect of the Arma chinensis on the larvae of Ectropis grisescens increased with the decrease of the prey density. The search effect of Arma chinensis was as follows: female adults > 5th instar nymphs > 4th instar nymphs. The intraspecific density of the 5th instar nymphs and female adults of Arma chinensis interfered with the predation of the Ectropis grisescens, and the intraspecific interference of the 5th instar nymphs was less than that of the female adults.
    Reference | Related Articles | Metrics
    Study on the Differences of Volatile Components in Jingshan Tea from Different Tea Cultivars
    HOU Zhiwei, LÜ Yongming, MA Kuan, ZHANG Huiyuan, GU Zhe, ZHANG Ran, LI Le, JIN Yugu, SU Zhucheng, CHEN Hongping
    Journal of Tea Science    2024, 44 (5): 747-762.   DOI: 10.13305/j.cnki.jts.20240824.001
    Abstract266)      PDF(pc) (3993KB)(309)       Save
    To investigate the differences of volatile components in Jingshan tea from different tea cultivars, the stir bar sorptive extraction gas chromatography-mass spectrometry (SBSE-GC-MS), headspacegas chromatography-ion mobility spectrometry (HS-GC-IMS) were used to analyze the volatile components in Jingshan tea from five tea cultivars, including ‘Jingshan No. 1', ‘Jingshan No. 2', ‘Jiukeng', ‘Yingshuang' and ‘Cuifeng'. Firstly, a total of 93 volatile components were identified by GC-MS and 79 volatile components by GC-IMS. Secondly, principal component analysis (PCA) was used to reveal the differences in the volatile components of Jingshan tea from different tea cultivars. Finally, orthogonal partial least squares discriminant analysis (OPLS-DA) was used to determine the differential volatile components between different cultivars, and the relative odor activity value (ROAV) was used to further identify the key differential volatile components. The results show that 16 and 12 volatile compounds were identified as the key differential volatile compounds of different tea cultivars by SBSE-GC-MS and HS-GC-IMS respectively. Among them, the characteristic volatile components of ‘Jingshan No. 2' include 2-heptanol, methyl jasmonate, 2-methyl butanal, and 2-heptanone, which have clear fragrance characteristics and higher contents than other cultivars. The contents of methyl eugenol, hexanal, and (Z)-3-hexen-1-ol in ‘Jingshan No. 1' were relatively rich. The contents of oxidized limonene and pentanal in ‘Jiukeng' were relatively higher. The sensory evaluation results indicate that ‘Jingshan No. 1', ‘Cuifeng' and ‘Jingshan No. 2' had higher aroma scores. This study revealed that the characteristic volatile compounds in Jingshan tea from different tea cultivars have significant differences, which provided a theoretical basis for the selection of high-quality raw materials in Jingshan tea production, and had important value for achieving precise processing and targeted quality control of high-quality Jingshan tea.
    Reference | Related Articles | Metrics
    The Impact of Organic Certification on the Business Profit of Tea Enterprises: Counterfactual Estimation Based on Propensity Score Matching
    YANG Xulin, PAN Changjian, JIANG Renhua
    Journal of Tea Science    2023, 43 (6): 881-890.   DOI: 10.13305/j.cnki.jts.2023.06.009
    Abstract367)      PDF(pc) (354KB)(301)       Save
    This paper empirically examined the impact of organic certification on tea enterprises’ business profit using the propensity score matching method based on the data of 288 tea enterprises nationwide. The empirical evidence shows that organic certification has a positive effect on the business profit of tea enterprises, and this effect is heterogeneous in different regions and different tea plantation sizes. Compared with the central and western tea enterprises, the participation of eastern enterprises in organic certification has a significant effect on improving business profits. Compared with tea enterprises with a median or higher area of their own tea gardens, enterprises with smaller area of their own tea gardens have a greater benefit from participating in organic certification. Accordingly, governments can support tea enterprises to carry out organic certification in the framework of green development. Enterprises in the central and western regions can learn from the practical experience of the development of organic tea in eastern enterprises. Tea enterprises need to combine their own development positioning and market demand, consider whether to promote the quality and efficiency of enterprises through organic certification.
    Reference | Related Articles | Metrics
    Optimization of Culture Conditions of A Trichoderma yunnanensis and Its Control Efficiency of Tea Anthracnose
    LIU Hui, FENG Yueling, ZHU Xiuying, ZHENG Zhouzhou, LIU Sirui, ZHOU Luona, PAN Xuezhen, SONG Li
    Journal of Tea Science    2024, 44 (4): 627-638.   DOI: 10.13305/j.cnki.jts.2024.04.013
    Abstract163)      PDF(pc) (2401KB)(300)       Save
    To optimize the fermentation conditions of Trichoderma yunnanensis, which has antagonistic effect on Colletotrichum camelliae, single factor and response surface tests were performed with the inhibition rate of C. camelliae as the evaluation index. Then, the antagonistic activity, in vitro leaf control effect, indoor pot control effect, and growth effect of the fermentation broth on C. camelliae and tea plants, respectively, were determined. The results show that the optimum fermentation conditions of T. yunnanense were as follows: potato 200βg·L-1, mannitol 18.85βg·L-1, yeast extract 4.73βg·L-1, liquid content 372.60βmL·L-1, culture temperature 25β℃, pH 6.6, 12L∶12D. The inhibitory rate of the obtained fermentation broth on C. camelliae reached 92.61% under the ratio of 1∶9 mixed with potato broth (PDA) medium. The control effect of the fermentation broth on anthrax in vitro leaf was 63.71% and that on indoor potted tea plants was 68.95%, both of which were significantly higher than that of T. harzianum wettable powder and carbendazim. Compared with the water control, the growth of tea seedlings treated with fermentation solution of T. yunnensis was significantly improved, which was manifested by the increase of root length, root fresh weight, plant height and above ground fresh weight by 69.16%, 215.70%, 42.13% and 212.11% respectively. Overall, T. yunnanense fermentation liquid has both antibiotic and growth-promoting effects. The results provided a theoretical basis for the application of T. yunnanense fermentation broth in the biological control of tea anthracnose.
    Reference | Related Articles | Metrics
    Research on Flavors and Qualities of Optimization Blending Samples of Hunan Raw Dark Teas
    JIANG Ating, LIU Qiaofang, XIAO Juanjuan, HE Junhui, GAO Bingcai, HUANG Jian'an, WANG Kunbo, LIU Zhonghua, YU Lijun
    Journal of Tea Science    2024, 44 (5): 763-778.   DOI: 10.13305/j.cnki.jts.20240829.001
    Abstract199)      PDF(pc) (900KB)(291)       Save
    In order to study how to obtain the raw materials of dark tea processing with Hunan regional characteristics of mellow and fresh taste, heavy and long-lasting aroma, Zhuyeqi raw dark tea (Z), Taoyuan-daye raw dark tea (T), Huangjincha 1 raw dark tea (H) were obtained by processing the fresh leaves of relative cultivars, and six blending tea samples were obtained by blending these three raw dark tea (Z∶T∶H) with the ratio of 20∶20∶60, 20∶60∶20, 40∶15∶45, 40∶45∶15, 60∶10∶30, 60∶30∶10. Comparative analysis of their sensory evaluation, taste quality and aroma components was also conducted. The results show that when the proportion of Zhuyeqi raw dark tea was 40% and 60%, the blended teas were mellower and fresher in taste, with heavier and longer-lasting aroma than the original raw tea and the two blends with the proportion of Zhuyeqi raw dark tea of 20%. The tea samples' quality had significant improvement. The results of biochemical analysis show that, when the proportion of Zhuyeqi raw dark tea was 40% and 60%, the contents of water extract and gallic acid were higher, and the taste was mellow and fresh. On this basis, when Taoyuan-daye raw dark tea accounted for a higher percentage of tea, the contents of tea polyphenols, flavonoids, total catechins and caffeine were higher and the taste was mellow. When Huangjincha 1 raw dark tea accounted for a higher percentage of tea, the content of soluble sugar was higher, and the taste was sweeter. A total of 77 volatile components were detected by headspace-solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS). Based on the variable importance in projection (VIP) of the orthogonal partial least squares discriminant analysis method (OPLS-DA), 41 components (VIP>1) were screened out by this experiment, and by further calculating their relative odor activity value (ROAV), 13 key differential volatiles such as linalool, L-α-terpineol, cedrol, isopropylidene acetone and crocinaldehyde were identified (VIP>1, ROAV>1). When the proportion of Zhuyeqi raw dark tea was 40% and 60%, the high aroma and lasting characteristics were closely related to the high contents of saffron and aldehyde. Adding high proportion of Huangjincha 1 raw dark tea, the contents of D-limonene and linalool oxide (Ⅳ) were higher, which gave the floral aroma of the blending samples.
    Reference | Related Articles | Metrics
    Determination of Afidopyropen and Metabolite M440I007 in Tea Tissues by Modified QuEChERS Coupled with Ultra-high Performance Liquid Chromatography-Tandem Mass Spectrometry
    QIN Yujie, GUO Mingming, CHEN Yongjing, ZHOU Li
    Journal of Tea Science    2024, 44 (3): 515-525.   DOI: 10.13305/j.cnki.jts.2024.03.010
    Abstract238)      PDF(pc) (573KB)(291)       Save
    Afidopyropen, a novel biorational insecticide, was registered in China in 2023 for the control of tea leafhoppers in tea plantation. In this study, an analytical method was developed for the determination of afidopyropen and its metabolite M440I007 in tea tissues by a modified QuEChERS method combined with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Roots, stems and leaves of tea plants were extracted by water and acetonitrile, and purified with primary secondary amine (PSA), hydroxylated multi-walled carbon nanotubes (MWCNT-OH) and graphitized carbon black (GCB). The target compounds were determined by UPLC-MS/MS in multiple reaction monitoring (MRM) mode, and quantified by external standard method with matrix-matched standard curve. Both targets display excellent linearity (R2>0.999 5) in the range of 0.002-5.000 mg·L-1. The recoveries of both compounds at the spiked levels of 0.005-2.000 mg·kg-1 ranged from 78.3% to 106.0% with the relative standard deviations (RSD) ≤ 12.85%. The limits of quantification (LOQs) and detection (LODs) of the method were 0.005 mg·kg-1and 0.002 mg·kg-1, respectively. The developed method was applied to detect afidopyrofen and M440I007 in tea seedling tissues cultured in soil treated with afidopyropen in a pot experiment for 7 days. The results show that the distribution of afidopyropen in the tissues was roots (0.102 mg·kg-1) > stems (0.078 mg·kg-1) > leaves (0.007 mg·kg-1). The translocation factors, TFroot-stem and TFstem-leaf, were both less than 1, and the residue levels of the metabolite M440I007 were below the LOQ. The method established in this study is low-cost, accurate and sensitive, which can serve as a technical basis for further research on the uptake and transport behaviors of afidopyropen and M440I007 in tea plants.
    Reference | Related Articles | Metrics
    Carbonylation Modification of Epicatechin and Its Activities of UV Absorption and Antioxidant
    LEI Xiang, ZHANG Minfeng, LIN Hui, WANG Lili, ZHENG Deyong
    Journal of Tea Science    2024, 44 (3): 493-500.   DOI: 10.13305/j.cnki.jts.2024.03.002
    Abstract235)      PDF(pc) (359KB)(291)       Save
    In order to enhance the UV absorption characteristic of epicatechin derivatives and improve their solubility in non-polar solvents such as oils and fats, 2,2'-di(p-hydroxybenzocarbonyl)-epicatechin was synthesized from epicatechin and p-hydroxybenzoic acid using methane sulfonic acid as solvent and catalyst. The target products were separated by column chromatography, and the purity was verified by high performance liquid chromatography (HPLC), and the structure of the target products were verified by UV-vis, FT-IR, 1H NMR, 13C NMR, LC-MS spectroscopy. The UV absorption characteristic of 2,2'-di(p-hydroxybenzocarbonyl)-epicatechin and its ability to scavenge ABTS+·, DPPH· and O2-· were evaluated. The results show that the synthesized 2,2'-di(p-hydroxybenzocarbonyl)-epicatechin had similar UV absorption and comparable molar absorptivity to OMC, the commonly used UV absorber, and is expected to be an excellent UV absorber in the UVB band. 2,2'-di(p-hydroxybenzocarbonyl)-epicatechin had good antioxidant activity in vitro, and its antioxidant capacity in vitro was higher than that of VC and slightly lower than that of epicatechin, which is expected to be used for cosmetic applications.
    Reference | Related Articles | Metrics
    Comparison of Soluble and Membrane-bound Polyphenol Oxidase from Cultivars Suitable to Ninghong Tea Production
    ZHAN Kun, YANG Zhengli, XU Ziyi, LAI Zhangfeng, LI Jun, CHEN Luojun, ZHOU Sixi, LI Mingxi, GAN Yudi
    Journal of Tea Science    2023, 43 (3): 356-366.   DOI: 10.13305/j.cnki.jts.2023.03.003
    Abstract415)      PDF(pc) (459KB)(290)       Save
    In order to investigate the enzymatic properties of polyphenol oxidase (PPO) in cultivars suitable for Ninghong tea production, as well as to increase the theaflavin content in Ninghong tea, one bud and two fresh leaves from ‘Ningzhou population’, ‘Ningzhou 2’ and ‘Dayelong’ were used as raw materials to obtain membrane-bound polyphenol oxidase (mPPO) and soluble polyphenol oxidase (sPPO) crude enzymes and to analyze the enzymatic properties. Using catechol as the substrate, the mPPO specific activity of each cultivar was higher than sPPO specific activity. mPPO specific activity of ‘Dayelong’ was the highest (542.59±25.13 U·mg-1), and sPPO activity of ‘Ningzhou 2’ was the lowest (112.57±14.01 U·mg-1). The optimum reaction temperature for mPPO was 40-60 ℃, the optimum reaction temperature for sPPO was 30-50 ℃, and the highest optimum reaction temperature for mPPO of ‘Ningzhou 2’ and ‘Dayelong’ was 55 ℃. The lowest sPPO optimum reaction temperature for ‘Ningzhou 2’ and ‘Ningzhou population’ was 35 ℃. The optimum pH of sPPO ranged from 7.00-8.50 with one peak, while the optimum pH of mPPO ranged from 5.00-8.00 with two peaks. The optimum pH of sPPO in ‘Ningzhou population’ was 8.00, and the optimum pH of mPPO in ‘Ningzhou 2’ was 5.50. mPPO and sPPO had strong affinity for dihydroxy phenols, and mPPO in ‘Ningzhou 2’ had the strongest affinity for catechol and the highest catalytic efficiency. Ascorbic acid had the best inhibitory effect on sPPO in ‘Ningzhou population’. While halide inhibitors had no inhibitory effect on both sPPO and mPPO activities in tea cultivars suitable for Ninghong tea production. EDTA had an activating effect on mPPO. The thermal deactivation of sPPO and mPPO in these tea cultivars followed the primary reaction kinetics, with mPPO in ‘Dayelong’ having the best thermal resistance, the worst thermal sensitivity, and the weakest sensitivity to temperature. While sPPO in ‘Ningzhou population’ had the worst thermal resistance. The sPPO of ‘Ningzhou population’ was the worst heat-resistance, the highest heat-sensitivity and temperature-sensitivity. The results show that there were some differences in the sPPO and mPPO enzyme properties among the cultivars. Tea cultivar ‘Dayelong’ had the highest mPPO specific activity and the best heat resistance, which provided a suitable enzyme source for the processing of high theaflavin Ninghong tea. This study also provided a theoretical reference for the actual Ninghong tea production.
    Reference | Related Articles | Metrics
    Review on the Formation Pathway of Kombucha Bacterial Cellulose and Its Application in Efficient Utilization of Tea Waste
    XU Qingqing, NIE Qing, LIU Zhusheng, GUO Qing, LIU Zhonghua, CAI Shuxian
    Journal of Tea Science    2024, 44 (5): 707-717.   DOI: 10.13305/j.cnki.jts.2024.05.001
    Abstract299)      PDF(pc) (831KB)(288)       Save
    Tea waste and summer-autumn tea can be used to produce Kombucha and bacterial cellulose, helping to reduce environmental pollution and resource waste while developing high market value products. Bacterial cellulose, as a highly crystalline and sustainably renewable polysaccharide, has a wide range of potential applications in biomedicine, eco-friendly packaging, textiles, new energy batteries, skincare products, and other fields. This paper reviewed recent research on the applications of bacterial cellulose membranes, focusing on the effects of different fermentation environments and tea types on the quality of bacterial cellulose membranes. It confirmed that adjusting fermentation parameters can produce cellulose with specific crystalline structures. The paper also discussed the role of tea components in the formation of bacterial cellulose membranes and proposed new ideas for improving the yield and quality of Kombucha bacterial cellulose membranes. The health benefits of Kombucha bacterial cellulose membranes and their significant role in sustainable product development were emphasized. The paper highlighted the need for further research to promote their industrial application.
    Reference | Related Articles | Metrics
    Isolation and Identification of Aspergillus cristatus LJSC.2006 and Its Effect on Fu Tea’s Quality
    XIAO Juanjuan, CHENG Ying, LIU Yan, LIU Qiaofang, JIANG Ating, HUANG Jian'an, WANG Kunbo, LIU Zhonghua, WANG Zhenhong, YU Lijun
    Journal of Tea Science    2024, 44 (4): 639-654.   DOI: 10.13305/j.cnki.jts.2024.04.009
    Abstract179)      PDF(pc) (4683KB)(283)       Save
    This study investigated the effect of self-isolated and purified strain LJSC.2006 on the quality of Hunan Fu tea, a primary dark tea. Strain LJSC.2006 was identified as Aspergillus cristatus (Aspergillus cristatus LJSC.2006, GenBank accession number: MZ147025) through colony plate morphology, spore electron microscopy, and mycelial molecular marker identification. Sensory evaluation, biochemical composition analysis and head space solid phase microextraction/gas chromatography-mass spectrometry methods were applied to assess the flavor and aroma qualities of dark tea raw materials and fermented Jinhua loose tea. The results indicate that compared with the primary dark tea, the fermented loose tea sample exhibited a deeper color, the golden flowers, a richer fungus aroma, and a mellower taste. After fermentation by Aspergillus cristatus LJSC.2006, there was a decrease in the levels of flavor quality components such as tea polyphenols, soluble carbohydrates, free amino acids, flavonoids, ester-catechins, myricetin, quercetin and kaempferol. The aroma components, esters and aldehydes of the loose tea samples increased after fermentation. Styrene and cedrol were the common aroma components in the primary dark tea. (E)-linalool 3,7-oxide and acetophenone were the common aroma components in the fermented loose tea. Additionally, ten characteristic volatile components relative content were significantly increased, including methyl salicylate, (E,E)-2,4-heptadienal, (E)-linalool-3,7-oxide, (E)-furan oxidized linalool, (E)-2-nonanal, (E)-2-hexenal, (E,Z)-6-nonanal, acetophenone, (E)-2-nonanal, and methyl vanillate, which together contributed to the distinctive fungal fragrance of Jinhua loose tea.
    Reference | Related Articles | Metrics
    The Impact of Product Processing Standardization on Tea Firms’ Income from the Perspective of Scale Heterogeneity
    XIONG Yun, CHEN Jianghua, LI Daohe
    Journal of Tea Science    2023, 43 (3): 424-436.   DOI: 10.13305/j.cnki.jts.2023.03.009
    Abstract313)      PDF(pc) (373KB)(283)       Save
    Product processing standardization is an important means to promote the quality of tea products, enhance the competitiveness of tea firms. Based on the micro-research data of tea firms in Jiangxi Province, this study analyzed the impact of product processing standardization on tea firms’ income using ordinary least square (OLS), two stage least square (2SLS) and treatment effects model (TEM), and further analyzed the difference of the impact of product processing standardization on tea firms’ income under different operating scales using the threshold effect model. It was found that (1) the product processing standardization had a significant positive impact on tea firms’ income, and the adoption of standardized production could help increase tea firms’ income, among which the blending process and sensory evaluation measurement dimensions had a significant impact, and the sales of tea firms adopting standardized processing methods could be 10.01% higher than the control group. (2) The impact of product processing standardization on tea firms’ income had scale heterogeneity, and the income increasing effect of product processing standardization of tea firms under moderate scale operation was obvious, and the income increasing effect of processing standardization under over-scale operation was not obvious. Therefore, the government should actively guide and promote the promotion and application of processing standardization of tea firms, while encouraging firms to incorporate the blending process into the standardization system. Advocating tea firms in the moderate scale range could expand the operating scale through a variety of ways to fully stimulate the operating income of product processing standardization.
    Reference | Related Articles | Metrics
    Research Progress on the Impact of Environmental Stresses on Tea Quality during the Withering Process
    YAN Duo, YU Penghui, GONG Yushun
    Journal of Tea Science    2025, 45 (1): 1-14.   DOI: 10.13305/j.cnki.jts.2025.01.003
    Abstract278)      PDF(pc) (530KB)(272)       Save
    Withering is an important process for tea quality formation. Fresh tea leaves are subjected to a variety of environmental stresses such as water loss, temperature, light and mechanical damage during withering. Under these stresses, complex physiological and biochemical changes in leaves, which ultimately contribute to the formation of tea quality. This paper reviewed the effects of different environmental stresses on the formation of tea taste and aroma during the withering process. It mainly analyzed how different environmental stresses regulate the synthesis and metabolism of compounds in fresh tea leaves, and further explored their effects on the changes in cellular physical structure, enzymatic, and non-enzymatic chemical reactions in fresh tea leaves. This review provided theoretical supports for improving tea quality.
    Reference | Related Articles | Metrics
    Study on the Control Effect of Chemical Pesticides on the Empoasca onukii Adults
    ZOU Jiating, GUO Yuhang, BIAN Lei, LUO Zongxiu, LI Zhaoqun, XIU Chunli, FU Nanxia, CAI Xiaoming
    Journal of Tea Science    2023, 43 (4): 544-552.   DOI: 10.13305/j.cnki.jts.2023.04.003
    Abstract405)      PDF(pc) (419KB)(262)       Save
    Empoasca onukii is an important pest in tea gardens. Currently, the control was mainly depended on chemical pesticides, but less attention was paid to the control effect on the adults. In this study, the control effects of chemical pesticides on the adult E. onukii were evaluated through field experiments, and the reasons for the poor control efficiency were investigated by laboratory test. The results show that the chemical pesticides with good control effects on nymphs in the field did not have ideal control effects on adults. Indoor studies have shown that when spraying the entire tea shoots at concentrations even lower than those in the field, the adult mortality rates were 100%. Furthermore, the adult mortality rates were the highest (63.33%~71.67%) when the pesticides were applied at the middle part of tea plant shoots, and the adult mortality rates were the lowest (20.00%~28.33%) when applied at the top of shoots. Moreover, the adult mortality rate could be increased by increasing the shading range around the shoots or reducing the light intensity at the top of the shoots, when the pesticides were applied at the top of shoots. These results indicate that the main reason for the poor control efficiencies of chemical pesticides on the adult E. onukii in field is that the adults mainly live in the middle part of tea plant shoots. This phenomenon should also be related with light intensity. This finding provided a reference for the control of the adult E. onukii, and helped to enhance the control effects of chemical pesticides on E. onukii.
    Reference | Related Articles | Metrics
    Analysis of Genetic Diversity and Genetic Structure in Geographic Populations of Stephanitis chinensis from China Based on Mitochondrial DNA COI Sequence
    CHEN Shichun, JIANG Hongyan, LIAO Shuran, CHEN Tingxu, WANG Xiaoqing
    Journal of Tea Science    2023, 43 (6): 795-805.   DOI: 10.13305/j.cnki.jts.2023.06.008
    Abstract308)      PDF(pc) (1213KB)(248)       Save
    The tea lace bug, Stephanitis chinensis, is an important pest of the southwest tea region in China, which has spread and caused disasters in recent years. To analyze the ecological adaptation mechanism and disaster law of S. chinensis, COI sequences of 240 adults from 12 populations of this pest were sequenced. The genetic differentiation, gene flow level and molecular variance were analyzed by DnaSP 6.12.03, Arlequin 3.5.2.2 and MEGA 7.0.26, respectively. There were 75 mutation sites and 38 haplotypes in the COI sequences of 12 geographic populations, and only Hap13 was a shared haplotype. Haplotype diversity index (Hd) of the total population was 0.827 79, Hd values between geographical populations ranged from 0.00 to 0.85. Fixed coefficient (FST) and gene flow (Nm) value of total population were 0.864 26 and 0.039 87, respectively. The results indicate that there are a high degree of genetic differentiation and a small degree of gene exchange of the total population in China. Population pairs of 5 populations (CQCK, CQWX, HBES, HBSY and SXHZ) had low genetic differentiation and frequent gene exchange (FST<0.06, Nm>4.50), while other population pairs had high genetic differentiation and less gene exchange (FST>0.25, Nm<1.00). Molecular variance analysis (AMOVA) supports that the genetic differentiation was mainly among populations (86.43%). Tajima's D and Fu's Fs neutrality test support that population expansion events occurred in the CQBN, HBES populations and the whole population around the Daba Mountains. In this study, the risk of both invasion expansion and original population expansion of S. chinensis in China was analyzed and speculated. It suggests that the field monitoring of the tea lace bug should be strengthened in tea plantations.
    Reference | Related Articles | Metrics
    Effects of Broflanilide on the Biosynthesis and Recognition of Sex Pheromone in the Tea Grey Geometrid Ectropis grisescens
    XU Changxia, LUO Zongxiu, MA Long
    Journal of Tea Science    2024, 44 (4): 618-626.   DOI: 10.13305/j.cnki.jts.2024.04.006
    Abstract181)      PDF(pc) (613KB)(247)       Save
    The tea grey geometrid Ectropis grisescens Warren is a devastating chewing pest in tea plantations throughout China, and interfering with the sex pheromone recognition communication between female and male moths becomes an effective method to manage this insect pest. In the present study, the sublethal dose of broflanilide was used to treat adult E. grisescens. The results of wind tunnel tests reveal that the broflanilide-treated male adults showed a declined percentage of the behavioral responses, including excitation, oriented flight, and source contact. However, the corresponding durations of behavioral responses in male moths were significantly increased. Further studies using electrophysiological assays demonstrate that the electroantennogram responses of broflanilide-treated male moths to the sex pheromone of Z3,Z6,Z9-18:H at 0.01 mg·mL-1 were decreased by 54.57%. Besides, when female moths were treated with a sublethal dose of broflanilide, the gas chromatography-mass spectrometry (GC-MS) analyses demonstrates that the major sex pheromone components, Z3,Z6,Z9-18:H and Z3,epo6,Z9-18:H, in the female pheromone gland were decreased by 21.76% and 34.71% respectively compared with the control. This result reveals the suppression of sex pheromone biosynthesis in broflanilide-treated female moths. Further study by qRT-PCR analysis reveals that a cytochrome P450 monooxygenase of Egri-CYP340BD1 enriched in pheromone gland was significantly up-regulated in broflanilide-treated female moths. Taken together, this study demonstrates that broflanilide treatment would manipulate the courtship of this insect pest, and the results would contribute to the design of insect-behavior-modifying technology in novel pest management.
    Reference | Related Articles | Metrics
    Study on the Differences of Leaf Color and Volatiles of Different Insect-resistance Tea Cultivars
    SUN Yue, LIU Mengyue, GAO Chenxi, WU Quanjin, CAO Shixian, YU Shuntian, CHEN Zhidan, JIN Shan, SUN Weijiang
    Journal of Tea Science    2023, 43 (4): 525-543.   DOI: 10.13305/j.cnki.jts.2023.04.005
    Abstract432)      PDF(pc) (2465KB)(238)       Save
    In order to explore the differences in leaf color and volatiles of different insect-resistant tea cultivars, a two-year field population density survey was conducted on 11 tea cultivars. Through the indoor incubation test of field branches and the indoor life parameter determination test, the reliability of field population density as the resistance grading standard was proved. The color difference and wax content per unit leaf area of leaves were determined, and the volatiles of new shoots of one bud and two leaves that were not harmed by pests and diseases were detected by gas chromatography-mass spectrometry (GC-MS) in order to screen the differences among different insect-resistant tea cultivars. The results show that, M. onukii preferred tea cultivars with darker, lighter yellow leaves. D minowai preferred tea cultivars with brighter, more saturated colors and a higher yellow color, and D minowai placed more emphasis on the color of the leaf back. In terms of volatiles, the population densities of M. onukii were significantly and positively correlated with the relative content of linalool and negatively correlated with the relative contents of nonanal and dodecane. Population densities of D. minowai were significantly and positively correlated with the relative levels of dodecane and phenylethanol. The effects of dodecane on M. onukii and D. minowai were opposite, and the same trend was observed for the relationship between wax and population density in tea leaves, suggesting that the same volatile substance may have different reactions to different insects.
    Reference | Related Articles | Metrics
    The Complete Mitochondrial Genome Sequence and Phylogenetic Analysis of Thosea sinensis
    JIANG Hongyan, CHEN Shichun, LIAO Shuran, CHEN Tingxu, YANG Puxiang, XIE Xiaoqun, WANG Xiaoqing
    Journal of Tea Science    2023, 43 (4): 460-472.   DOI: 10.13305/j.cnki.jts.2023.04.002
    Abstract360)      PDF(pc) (1311KB)(232)       Save
    Thosea sinensis is an important agricultural and forestry pest in China with characteristics of wide distribution, polyphagy, and high damage. The purpose of this study was to report the mitochondrial genome of T. sinensis collected from Jiangxi, investigate its diversity and difference, and explore the evolutionary characteristics of Limacodidae insects. After Sanger sequencing, the complete mitochondrial genome sequence of T. sinensis was obtained by splicing, correcting and annotating, and the phylogenetic tree of 26 moth species in 17 families of Lepidoptera was constructed based on the protein sequences. The complete mitochondrial genome sequence was 15 540 bp in size, encoding 37 genes, including 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNA genes, and 1 control region of 425 bp. The gene arrangement is the same as that of the Ditrysia moths. By comparing the similarity of the full sequence and protein-coding genes of the mitochondrial genomes with other moths, the results show that the similarity between T. sinensis and Iragoides fasciata was the highest, and that between T. sinensis and Parasa consocia was the lowest. Phylogenetic analysis shows that the closest relationship of T. sinensis was with Iragoides fasciata, followed by Narosa nigrisigna, and all the moths from Lepidoptera were clustered into one branch. This study provided a scientific basis for further research on the origin, genetic diversity, migration, and differentiation of T. sinensis, as well as its resistance to pesticides.
    Reference | Related Articles | Metrics
    Investigation of Differential Fluorine Enrichment in Leaf Cell Walls of Different Tea Cultivars
    LIU Yu, YANG Peidi, ZHANG Peikai, ZHAN Wenli, LI You, YAO Suhang, ZHAO Yang, CHENG Yang, LIU Zhen, SHEN Chengwen
    Journal of Tea Science    2024, 44 (5): 735-746.   DOI: 10.13305/j.cnki.jts.2024.05.003
    Abstract203)      PDF(pc) (1735KB)(231)       Save
    Tea plants are known to hyperaccumulate fluorine, with significant variation in fluorine accumulation among different cultivars. To explore the patterns of fluorine accumulation in tea leaf cell walls, the fluorine content in leaves of 15 tea cultivars was measured. Moreover, the contents of pectin, hemicellulose, cellulose components, and their respective fluorine contents were analyzed. The distribution of fluorine in the cell walls at different maturity stages of leaves were examined. The results indicate that pectin is a crucial component reflecting the differences in fluoride accumulation and maturity level of the cell walls among cultivars. Only the mature leaves of ‘Liancha 7', ‘Zhuyeqi' and ‘Shangmeizhouzhong' increased pectin content and fluoride content in pectin compared to the young leaves. ‘Tieguanyin' was the only cultivar with the fluoride content in pectin decreased in the mature leaves compared to the young leaves. Correlation analysis of the fluoride proportion in the cell wall components reveals that higher fluoride content in the leaves correlates with greater maturity, reflecting a trend of multi-component fluoride accumulation in the cell walls. Through a comprehensive evaluation and cluster analysis, ‘Hanlü' exhibits consistently high levels of fluorine accumulation in cell walls at different maturity stages (D1-4=0.704 6, D5-8=0.928 6). ‘Fuding Dabaicha', ‘Xiangbolü', ‘Xiangbolü 2', ‘Biyun', and ‘Qianmei 702' show moderate levels of fluorine enrichment in cell walls (D1-4=0.3267-0.4861, D5-8=0.484 4~0.699 3), while ‘Yunnan Wuheidaye' and ‘Zhuyeqi' exhibit low levels of fluorine accumulation (D1-4=0.146 5-0.268 8, D5-8=0.2223-0.345 7). This study explored the regularity and difference of fluorine accumulation in tea cell walls from the perspectives of cultivar and leaf maturity, and provided insights for molecular breeding of low-fluorine tea cultivars.
    Reference | Related Articles | Metrics
    Prediction and Analysis of Active Components in Tea Stem Fermented Product Based on Network Pharmacology
    HE Haotian, XIAO Juanjuan, TANG Yiyu, LUO Mi, LIU Zhonghua, YU Lijun
    Journal of Tea Science    2024, 44 (4): 665-682.   DOI: 10.13305/j.cnki.jts.2024.04.010
    Abstract159)      PDF(pc) (10639KB)(230)       Save
    Tea stem has a significant impact on the sensory quality for Fucha fermentation product. To explore the active ingredients and targets of tea stems in Fucha, Aspergillus cristatus LJSC.2006 (GenBank accession number: MZ147020) was used to ferment tea stem and obtain the end products. Non-targeted metabolomics (LC-MS/MS), network pharmacology, and molecular docking were used to verify the experimental results. Based on partial least squares discriminant analysis (OPLS-DA), 295 kinds of non-targeted metabolites with differential expression between the fermented tea stem and raw tea stem were identified, including 41 carbohydrates, 37 organic acids, 33 phenols and derivatives, 27 terpenoids, 26 amines, 24 nitrogen-containing heterocyclic compounds, 21 esters, 19 glyeosides, 15 flavonoids and derivatives, 14 amino acids and derivatives, 9 steroids and derivatives, 9 alkaloids, 6 phenolic acids, 6 coumarins and derivatives, 1 catechin and derivatives and 7 others. The network pharmacological analysis show that there were 16 potential active ingredients acting on 248 targets, and 13 potential central targets were obtained through Protein-Protein Interaction (PPI) screening. According to the results of molecular docking, coumestrol, galangin, luteolin and crocetin were the main central active ingredients. EGFR, ESR1, SRC and PTGS2 were the main targets of tea stem fermented by Aspergillus cristatus.
    Reference | Related Articles | Metrics
    Evaluation of Aroma Types and Key Aroma Components of Bud-leaf Type Yellow Tea Based on GC-O-MS
    ZHOU Hongyu, WANG Yuanyuan, LI Faxin, NIE Congning, FENG Dejian, ZHAO Yueling, DU Xiao
    Journal of Tea Science    2024, 44 (6): 985-1004.   DOI: 10.13305/j.cnki.jts.2024.06.004
    Abstract169)      PDF(pc) (1272KB)(227)       Save
    To comprehensively analyze the characteristic aroma components of bud-leaf type yellow tea, headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), sensory evaluation and chemometrics were used to determine the aroma components of bud-leaf type yellow tea. It was found that the bud-leaf yellow tea was mainly characterized by a clear and sweet aroma, which was divided into three categories of “fresh-tender aroma”, “chestnut-sweet aroma” and “sweet aroma” by sensory evaluation. A total of 119 volatile components were detected by GC-MS, and then the candidate volatiles were screened out by the VIP values of cluster analysis (HCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Further, ROAV with GC-O analysis was used to clarify the key aroma components of bud-leaf type yellow tea. There were 60 characteristic aroma components with ROAV>1 in the bud-leaf type yellow tea, among which aldehydes dominated the “fresh-tender” type, alcohols dominated the “chestnut-sweet” type, 2-ethyl-5-methylpyrazine and 2,3-diethyl-5-methylpyrazine contributed significantly to the “sweet” type. The olfactory validation indicates that phenylethanol was the most important component for the fresh and sweet aroma of yellow tea. The key aroma of “fresh-tender” included phenylethanol, jasmine ketone, styrene, linalool, nonanal. The “chestnut-sweet aroma” was mainly derived from the components of heptanal, β-damascenone and 2-n-pentylfuran, while the “sweet aroma” was dominated by pyrazines and aldehydes, which presented a unique sweet and caramelized aroma. This study reveals the diversity of aroma components in bud-leaf type yellow tea, and elucidates the aroma differences between aroma types and their causes.
    Reference | Related Articles | Metrics
    Genetic Diversity Analysis of Euproctis pseudoconspersa and Its Bunyavirus (EpBYV) in China
    CHEN Shichun, JIANG Hongyan, LIAO Shuran, CHEN Tingxu, NIU Jinzhi, WANG Xiaoqing
    Journal of Tea Science    2024, 44 (5): 793-806.   DOI: 10.13305/j.cnki.jts.2024.05.009
    Abstract168)      PDF(pc) (3571KB)(213)       Save
    Tea tussock moth, Euproctis pseudoconspersa, is an important pest which damages tea plants and causes human dermatitis. Euproctis pseudoconspersa bunyavirus, EpBYV, is a bunyavirus that widely distributed in different geographical populations of E. pseudoconspersa. In order to control the E. pseudoconspersa and utilize the virus resources, it is necessary to fully understand the genetic background of E. pseudoconspersa and EpBYV. In this study, 148 samples of E. pseudoconspersa larvae from 15 geographic populations were collected. COI and ND5 gene sequences of E. pseudoconspersa and RdRp sequences of EpBYV were determined. The genetic diversities of E. pseudoconspersa and EpBYV were analyzed by DnaSP 6.12.03, Arlequin 3.5.2.2 and MEGA 7.0.26. Sequence analysis of the combined sequences of COI and ND5 genes shows that 15 geographic populations have high haplotype diversity (h=0.880 68) and low nucleotide diversity (π=0.003 17). Significantly high genetic differentiation among 99 population pairs (FST>0.290, P<0.05) was identified. Molecular variance analysis (AMOVA) shows that the genetic differentiation of E. pseudoconspersa was mainly among populations (87.12%), and the differentiation among groups was consistent with the second and third ladder boundaries in China. Demographic history analysis suggests that the population of E. pseudoconspersa is relatively stable. RdRp sequences were successfully amplified in the 138 samples except CK population. RdRp sequence analysis reveals that the 14 geographic populations of EpBYV had high haplotype diversity (h=0.935 26) and relatively low nucleotide diversity (π=0.017 95). The 93 population pairs had significantly higher genetic differentiation (FST>0.257, P<0.05). AMOVA analysis shows that the genetic differentiation of EpBYV was mainly between populations (62.13%). Demographic history analysis reveals that EpBYV might have undergone population expansions in the past. Based on the analysis of this study, the population of E. pseudoconspersa in China is relatively stable, and there is a risk of population expansion in Chengkou, Chongqing and Ningde, Fujian. The population of EpBYV has experienced population expansion. The infection rate and population expansion ability of EpBYV in E. pseudoconspersa are high, which has good potential for biological control of E. pseudoconspersa.
    Reference | Related Articles | Metrics
    Effects of Different Charcoal Baking Times on the Sensory Quality and Volatile Compounds of Dahongpao
    XIE He, XIAO Han, HU Tengfei, CHEN Guohe, LIU Yang, OU Xingchang, JIANG Ronggang, YU Liming, LI Qin, HUANG Jian'an, LIU Zhonghua, WANG Chao
    Journal of Tea Science    2024, 44 (6): 960-972.   DOI: 10.13305/j.cnki.jts.2024.06.011
    Abstract167)      PDF(pc) (1404KB)(210)       Save
    To investigate the aroma characteristics and dynamic changes of volatile compounds of Dahongpao at different charcoal baking times, quantitative descriptive analysis (QDA), headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography-quadrupole time-of-flight mass spectrometry (GC×GC-Q-TOF/MS) were applied to analyze the volatile compounds at different charcoal baking times of 200 min, 300 min, 400 min, 500 min and 600 min (LF200, LF300, LF400, LF500 and LF600). The results show that the grassy aroma appeared in the early stage of charcoal baking, and with the extension of charcoal baking time, the grassy aroma gradually disappeared, and the floral and fruity aroma were prominent, and the floral and fruity aroma were the most porminent in the LF600 sample. A total of 304 volatile compounds were detected in Dahongpao at different charcoal baking times, among which alcohols, aldehydes and esters were the main ones. The principal component analysis (PCA) and hierarchical cluster analysis (HCA) results divided the samples under different carbon baking times into three groups, and 11 major differential compounds were screened by variable important for the projection (VIP)>1 and relative odor activity value (ROAV)>1. Among them, the relative content of (E,E)-2,4-hexadienal in the grassy characteristic decreased with the extension of the charcoal baking time, while the relative contents of methyl benzoate, methyl phenylacetate, nerolidol and myrcene in the fruity characteristics increased with the extension of the charcoal baking time. The purpose of this study was to regulate the quality of Dahongpao, and to improve the drinking attributes for the subsequent production and processing of Dahongpao.
    Reference | Related Articles | Metrics
    Research on the Prototype and Process Parameters of Oolong Tea Rocking Green Mechanism of Non-circular Gear Planetary Gear Train
    LIU Limin
    Journal of Tea Science    2023, 43 (6): 844-856.   DOI: 10.13305/j.cnki.jts.20231025.001
    Abstract279)      PDF(pc) (1071KB)(210)       Save
    In response to the problems of uneven tea stirring quality and poor effect caused by insufficient friction between fresh leaves in the current oolong tea rocking green mechanism, this paper designed a set of oolong tea stirring mechanism based on a non-circular gear planetary gear train. The kinematics analysis model of the mechanism was established and its optimal mechanism parameters were obtained. The pitch curve and tooth profile parameters (m=2, α=20°, z=51) of the non-circular gear were designed and obtained using MATLAB software. The structure design and prototype development of the device were completed. On this basis, a 3-factor and 4-level orthogonal experiment was designed and carried out to evaluate the stirring effect of oolong tea. Multiple indicators were transformed into a single indicator to obtain a comprehensive score that can evaluate the shaking effect. The optimal process parameters were determined through orthogonal test analysis. Under the combination of these process parameters, the effective shaking rate of oolong tea fresh leaves was 87.52%, the water loss rate was 30.19%, and the comprehensive score was 97.02% of traditional manual shaking. The experimental results show that the oolong tea rocking green mechanism and the non-circular gear planetary gear train could meet the shaking needs of different degrees of tenderness and quantities of oolong tea, making the processed oolong tea more similar to manual stirring.
    Reference | Related Articles | Metrics
    A Study on the Neuroprotective Effects of Combined EGCG and L-Theanine from Tea Leaves
    DING Shuqia, XIE Xinya, LIU Zhusheng, LIAO Xianjun, LIU Zhonghua, CAI Shuxian
    Journal of Tea Science    2024, 44 (5): 779-792.   DOI: 10.13305/j.cnki.jts.20240918.001
    Abstract199)      PDF(pc) (2482KB)(199)       Save
    Differentiated neurons need to maintain axonal growth and function in a quiescent state. Previous studies have shown that epigallocatechin gallate (EGCG) and L-theanine can maintain the quiescent state of neurons and have neurorestorative effects, although the specific mechanisms are still unclear. In the Aβ25-35-induced PC12 cell damage model, combined treatment with EGCG and L-theanine improved cell metabolism and repair capacity, enhanced cell viability and showed a significant synergistic effect. Transcriptomic and network pharmacological analyses indicate that EGCG mainly maintains the quiescent state of cells by inhibiting oxidative stress, regulating fatty acid metabolism, and mitigating amyloid protein toxicity stress. L-theanine promotes axonal growth and regulates neuronal metabolism and synaptic function. The combined application of both compounds results in a broader and milder regulation of cellular networks, reducing cellular stress. This study provided theoretical support for the neuroprotective effects of tea and its value in an aging society.
    Reference | Related Articles | Metrics
    Quality Evaluation of Huoshan Huangya from the Perspective of Consumers
    JIANG Qing, QIU Tong, ZHAO Lei, ZHAO Xiaoyi, ZHANG Ying, CHEN Yingqi, GAN Shiya, DAI Qianying
    Journal of Tea Science    2024, 44 (4): 655-664.   DOI: 10.13305/j.cnki.jts.2024.04.004
    Abstract255)      PDF(pc) (1474KB)(197)       Save
    Huoshan huangya of Anhui is commonly made from tea cultivars ‘Huoshan-jinjizhong’ and ‘Shuchazao’, with the processing methods of yellow tea and green tea. This study dealt with consumer preferences and variation of taste intensity for different cultivars and processing of Huoshan huangya using the Preferential attribute elicitation (PAE) method and Time-intensity (TI) method. In the PAE test, after the evaluators reached an agreement on the generated attributes, they ranked and assigned the intensity of sensory attributes according to the importance of their influence on preferences. The results show that the taste rank sum (115) > aroma rank sum (81) > appearance rank sum (44), and all consumers commonly selected the important descriptors: sweet aftertaste, flowery aroma and tippy. In the TI test, five descriptors were selected based on the geometric mean M value: sweet aftertaste, mellow, bitter, fresh, and astringent. Descriptors of sweet and fresh of yellow tea made from the tea cultivar ‘Huoshan-jinjizhong’ were higher than that of green tea, and descriptors of mellow, bitter, astringent were lower than those of green tea. Teas made from ‘Shuchazao’ showed the opposite trend. This study applied PAE and TI methods to clarify the important characteristics of Huoshan huangya, by observing the dynamic sensory changes of Huoshan huangya with different cultivars and different processing methods, to propose yellow tea made from ‘Huoshan-jinjizhong’ and green tea made from ‘Shuchazao’ were more suitable from the perspective of consumers. This paper scientifically guided yellow tea enterprises to organize production and sales according to local conditions.
    Reference | Related Articles | Metrics
    Establishment of Lu'an Guapian Green Tea Brewing Control Chart
    ZHAO Xiaoyi, CHEN Aini, JIANG Qing, ZHAO Lei, QIU Tong, FANG Wanxin, LIANG Chuyun, SHARIPOVA Alina, DAI Qianying
    Journal of Tea Science    2024, 44 (1): 133-148.   DOI: 10.13305/j.cnki.jts.2024.01.012
    Abstract346)      PDF(pc) (2403KB)(194)       Save
    The Coffee Brewing Control Chart is widely used in the coffee industry. According to the evaluation indices of coffee, this study applied extraction yield (EY) and total dissolved solids (TDS), which represent flavor balance and strength respectively, as quality indices to evaluate Lu'an Guapian green tea (LAGP) infusion. The optimum range of EY and TDS which yielded the maximum consumer acceptance were estimated by survival analysis. EY ranged from 2.53% to 4.57%, and TDS ranged from 0.14% to 0.28%. The LAGP Brewing Control Chart was established regarding the optimum range as the “ideal” zone. The chart was verified by both consumers and experts. This study indicates that when tea to water ratios (g∶mL) ranged from 1∶30 to 1∶15, brewing temperature ranged from 85 ℃ to 100 ℃, regulating brewing time of the first, second and third infusion less than 33 s, 15 s and 13 s, respectively, the ideal infusion can be gained. The study scientifically provided theory basis for guiding green tea brewing like LAGP.
    Reference | Related Articles | Metrics
    Identification of the Pathogen Causing New Twig Wilting on Tea Plants and Screening of Control Chemicals
    WANG Juan, TU Yiyi, LÜ Wuyun, CHEN Yijia, LI Shipu, WANG Yuchun, CHEN Yanan
    Journal of Tea Science    2024, 44 (5): 807-815.   DOI: 10.13305/j.cnki.jts.2024.05.007
    Abstract185)      PDF(pc) (3342KB)(193)       Save
    During summer and autumn, serious new twig wilting occurs on a large scale in ‘Jiaming No. 1' tea gardens of Ruian City, Wenzhou, Zhejiang Province, China. The disease initially appears as irregular brown spots on the twigs, which later spread to shoots and leaves, causing the tea shoots to wilt and the leaves to curl and shrink, and eventually the whole branch to die. In this study, a strain was isolated and purified using the tissue isolation method. Combining the morphological characteristics with the phylogenetic analyses based on the sequences of the internal transcribed spacer regions (ITS), β-tubulin (TUB2), and the translation elongation factor1 alpha (TEF1-α), the isolated strain was identified as Botryosphaeria fusispora. Laboratory pathogenicity tests show that B. fusispora was the pathogen causing the twig wilting disease present on ‘Jiaming No. 1'. These results indicate that B. fusispora can be a new record species causing twig wilting on tea plants. In addition, mycelial growth inhibition tests were conducted to examine the sensitivity of the pathogen to three commercial fungicides, including chlorothalonil, thiophanate-methyl and pyraclostrobin. Among the tested fungicides, thiophanate-methyl was found to be the most effective in suppressing the radial growth of the strain, with an EC50 of 1.91 μg·mL-1, followed by pyraclostrobin, with an EC50 of 2.25 μg·mL-1.
    Reference | Related Articles | Metrics
    Analysis of the Differences in Physical and Chemical Indicators of Tea Product Quality Standards in China
    LI Wenyan, ZHANG Lin, CHEN Liyan, ZHANG Yingbin, ZHOU Sujuan, HONG Yiwei, LIANG Sichen, SUN Hongfeng, CHEN Hongping
    Journal of Tea Science    2024, 44 (5): 843-852.   DOI: 10.13305/j.cnki.jts.2024.05.006
    Abstract272)      PDF(pc) (1092KB)(192)       Save
    Physical and chemical components, as the key substance of tea quality, to a certain extent determine the flavor, quality characteristics, and quality level of tea, thus becoming the key indicator of Chinese tea product standards. China has set up a variety of standards related to tea products, which have certain common characteristics and specificities. However, at present, there is little research on the physical and chemical indicator characteristics of Chinese tea product standards. We collected 227 national, industry, and local standards for tea and related products in China, including 20 physical and chemical indicators. Due to differences in origin, raw materials, processing technology and harvesting time, there is some variability in the requirements of physical and chemical indicators among different tea standards, but the direction of quality requirements is consistent. The number of green tea standards, as well as their physical and chemical index parameters are the most numerous and most demanding. The requirements of national standards for tea are generally lower than those of industry or local standards. Compared with national basic tea product standards, geographical indications for tea products are generally higher in terms of physical and chemical index requirements. This study provided a reference for the construction and improvement of the product quality standard system of tea products in China.
    Reference | Related Articles | Metrics
    Determination of Glyphosate and Its Metabolites in Tea by Automatic Solid Phase Extraction Combined with UPLC-MS/MS
    YI Huajuan, ZHU Jieling, ZHOU Ruizheng, ZHENG Yaolin, ZHANG Shuquan, YANG Le, SU Yonglun
    Journal of Tea Science    2023, 43 (6): 857-869.   DOI: 10.13305/j.cnki.jts.2023.06.010
    Abstract326)      PDF(pc) (507KB)(189)       Save
    An analytical method for the determination of glyphosate and its metabolite aminomethylphosphonic acid in tea was established by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The samples were extracted and preliminarily purified using a water dichloromethane system and the sample matrix was further purified by mixed-mode cation exchanger column filled with polystyrene bonded benzenesulfonic acid in an automatic solid phase extractor. The optimal derivation conditions obtained by orthogonal test and variance analysis were 5% sodium borate buffer solution and 10 mg·mL-1 FMOC-Cl derivatizing agent for derivatization at room temperature for 2 h. The derived sample solution was subjected to gradient elution separation on HSS T3 column and 5 mmol·L-1 ammonium acetate solution (containing 0.1% formic acid)-acetonitrile mobile phase system. The targets were analyzed by UPLC-MS/MS and quantified by internal standard method. The linearity of glyphosate and aminomethylphosphonic acid was good in the concentration range of 0.2-50 ng·mL-1 and the correlation coefficient (R2) was greater than 0.999. The detection limit of the method was 2 μg·kg-1, and the quantitation limit was 5 μg·kg-1. The recoveries of 5, 50 and 250 μg·kg-1 were in range of 94.2%-106.7% with relative standard deviations of 3.8%-4.9%, at low, medium and high spiked levels. The method is suitable for the determination of glyphosate and aminomethylphosphonic acid residues in daily large quantities of tea samples in the laboratory with the advantages of high efficiency, high accuracy, high throughput, low matrix interference and high degree of automation.
    Reference | Related Articles | Metrics
    Identification of Pectin Methylesterase and Its Inhibitory Subfamily Genes, and Functional Analysis of CsPME55 in Response to Fluoride Stress in Camellia sinensis
    XU Wenluan, WEN Xiaoju, JIA Yuxuan, NI Dejiang, WANG Mingle, CHEN Yuqiong
    Journal of Tea Science    2024, 44 (6): 869-886.   DOI: 10.13305/j.cnki.jts.2024.06.008
    Abstract168)      PDF(pc) (9111KB)(187)       Save
    Tea plant (Camellia sinensis) has fluoride (F) enrichment characteristics, and F is mainly enriched in the cell wall component pectin. Pectin methylsterase (PME) and its inhibitor PMEI can catalyze the modification of pectin, thereby affecting cell wall characteristics and participating in the regulation of processes like plant growth and development, stress response and so on. In this study, 85 CsPMEs and 56 CsPMEIs were identified from the C. sinensis ‘Shuchazao’ genome, which were divided into 4 and 5 subgroups, respectively. Distinct subgroups may exhibit functional distinction due to varied gene architectures, conserved motifs and expression patterns. Quantitative real-time PCR (qRT-PCR) analysis reveals that the expression levels of CsPME3a, CsPME55, CsPMEI1 and CsPMEI3 were significantly induced in the mature leaves of ‘Fuding Dabaicha’ under F treatment. Moreover, overexpression of CsPME55 alleviated Arabidopsis root growth inhibition induced by F stress, suggesting its potential role in F stress regulation in tea plants. These findings could pave the way for further research on the functional involvement of PME and PMEI gene families in F response.
    Reference | Related Articles | Metrics
    TTLD-YOLOv7: An Algorithm for Detecting Tea Diseases in An Unstructured Environment
    YU Shuyan, DU Xiaochen, FENG Hailin, LI Yan′e
    Journal of Tea Science    2024, 44 (3): 453-468.   DOI: 10.13305/j.cnki.jts.2024.03.012
    Abstract181)      PDF(pc) (1394KB)(180)       Save
    Tea diseases have an extremely serious impact on tea plantations and related industries. Traditional methods for disease detection in the dynamic and complex tea plantation environment are inefficient and unsatisfactory. This study proposed that a YOLOv7-tiny-based model enhanced the fine-grained detection of tea tree diseases. By integrating CoordConv and ECA channel attention mechanisms, this model achieved higher spatial recognition capability in convolutional feature maps and reduced the effect of background noise on feature recognition. Further improvements included the use of a normalized Wasserstein distance metric and decoupled heads to improve the detection of small spots. A new anchor frame was generated using the K-means algorithm based on the specificity of tea spots to improve the accuracy and generalizability of the model. Comparative analysis shows that the model outperforms the existing models Faster R-CNN, SSD, YOLOv5s, YOLO-Tea, YOLOv7-tiny, and YOLOv7, with an average accuracy improvement of 5.9 percentage points to 93%. The improved model could be applied to tea disease monitoring.
    Reference | Related Articles | Metrics
    Determination of Selenium in Tea by Microwave Digestion-inductively Coupled Plasma Mass Spectrometry (ICP-MS)
    XU Wenqi
    Journal of Tea Science    2024, 44 (6): 1014-1022.   DOI: 10.13305/j.cnki.jts.2024.06.007
    Abstract119)      PDF(pc) (647KB)(177)       Save
    In order to improve the sensitivity and stability of microwave digestion-inductively coupled plasma mass spectrometry (ICP-MS), an accurate method for the determination of selenium in tea was established. The sensitization effects of methanol, ethanol, isopropanol, n-butanol etc. as sensitizers were investigated, as well as the impact of adding 0-10% n-butanol to the internal standard on the accurate determination of total selenium content in tea were tested. By optimizing the pretreatment method and ICP-MS instrument parameters, a method for the accurate detection of total selenium content in tea using microwave digestion-ICP-MS with 3% n-butanol as the sensitizer was established. This method enhances the selenium signal intensity, thereby improving the accuracy and stability of the total selenium content detection in tea. To determine the optimum conditions for the determination of total selenium in tea, n-Butanol as sensitizer had lower detection limit and higher accuracy (0.001 71 mg·kg-1), and 3% n-butanol had the best sensitizing effect. It was more accurate to determine the selenium content in tea reference materials. The linear correlation coefficient R2 of selenium curve was greater than 0.999. The recovery of the added standard was from 86.0% to 104%, and the relative standard deviations (RSD) was between 1.10% and 4.44%. The paired t-test shows that the P value was greater than 0.05, and there was no significant difference between the two atomic fluorescence spectroscopy. This method is simple, showing high sensitivity, low detection limit, high precision and good reproducibility. This method is suitable for the accurate determination of selenium in tea.
    Reference | Related Articles | Metrics
    Effects of Combined Drought and Low-temperature Stress on Photosynthetic Physiological Characteristics of Tea Plants and Simulation Prediction
    ZHAO Qian, LIU Qian, CAI-HE Jiayi, HE Jieqi, FANG Yunya, LIU Yuxin, CHEN Chao, ZHENG Yaodong, ZHANG Tianjing, YU Wenjuan, YANG Guang
    Journal of Tea Science    2024, 44 (6): 901-916.   DOI: 10.13305/j.cnki.jts.2024.06.010
    Abstract222)      PDF(pc) (1626KB)(175)       Save
    This study aimed to investigate the effects of multiple climatic stresses on the photosynthetic efficiency of tea plants and to devise an efficient, precise stress classification system for real-time monitoring. We focused on the typical tea cultivars grown extensively in Fujian Province and systematically monitored their photosynthetic physiological responses under combined drought and low-temperature stress. Utilizing the collected data, we established a rapid stress classification method based on photosynthetic physiological characteristics and constructed a photosynthesis prediction and early warning model. The results reveal that all tested tea cultivars exhibited a significant decline in leaf photosynthetic efficiency under combined stress, with the decreasing trend displaying a clear linear relationship with increasing stress intensity. Notably, ‘Tieguanyin’ demonstrated a significantly lesser decline in photosynthetic efficiency compared to other cultivars, suggesting its robust stress tolerance. In contrast, ‘Fuding Dabaicha’ showed the least stress tolerance. By selecting photosynthetic physiological parameters highly sensitive to combined stress and employing the K-means clustering algorithm, we developed a rapid stress classification method with an accuracy exceeding 80%. Various models were then used to predict and validate the response of photosynthetic physiological indicators to environmental stress, with the Random Forest (RF) model yielding the highest accuracy. This study provided a reference for the selection and breeding of tea cultivars under diverse climatic conditions. The stress classification method enables swift categorization of combined stress in tea plants, while the RF model facilitates non-destructive monitoring and early warning of photosynthetic physiology, offering significant practical value in tea production.
    Reference | Related Articles | Metrics
    Changes of Rhizospheric Pathogen Alternaria sp. and Its Antagonistic Bacteria Pseudomonas sp. of Continuous Cropping Tea Plants Mediated by Phenolic Acids
    LI Yanchun, WANG Yixiang, YE Jing, LI Zhaowei
    Journal of Tea Science    2023, 43 (6): 823-834.   DOI: 10.13305/j.cnki.jts.2023.06.007
    Abstract324)      PDF(pc) (1798KB)(174)       Save
    Tea plant is an important economic crop in China. Long-term continuous cropping of tea plants has resulted in severe problems such as the imbalance of soil microbial community structure, soil disease exacerbation. Exploring the molecular mechanism underlying the formation of continuous cropping obstacles in Tieguanyin tea gardens is of great significance for seeking effective techniques for preventing and controlling the continuous cropping obstacle phenomenon. In this study, the pathogen and its antagonistic bacteria were isolated from the rhizosphere of Tieguanyin tea garden and identified by methods such as microbial isolation and purification, and plate confrontation. Quantitative analysis was conducted on the number of pathogen and its antagonistic bacteria in the rhizospheric soils of different continuous cropping years (0, 1, 10, and 20 years). Simultaneously, high-performance liquid chromatography (HPLC) technology was used to detect the changes of phenolic acid contents in the rhizospheric soils of different continuous cropping years, and the ratio of various phenolic acids in the soils was simulated to investigate the effects of phenolic acids on the rhizospheric pathogen and its antagonistic bacteria. The results show that one pathogenic fungus Alternaria sp. was isolated and identified from the infected roots of Tieguanyin under 20 years’ continuous cropping, and an antagonistic bacteria Pseudomonas sp. was identified from the rhizospheric soils. Fluorescence quantitative PCR analysis shows that the content of Alternaria sp. in 20 years’ continuous cropping soils was significantly higher than 1 year tea garden, while the content of Pseudomonas sp. was significantly lower. Five phenolic acids, including p-hydroxybenzoic acid, vanillic acid, syringic acid, vanillin, and ferulic acid, were detected in the rhizospheric soils, with an average ratio of 38∶229∶11∶11∶3. Phenolic acids did not accumulate in the soils, but showed a trend of first increasing and then decreasing with the increase of continuous cropping years. Simulation experiments found that mixed phenolic acids at low to medium concentrations (30-120 mmol·L-1) could significantly promote the mycelial growth of Alternaria sp. while single phenolic acid such as p-hydroxybenzoic acid, vanillic acid, and syringic acid at low concentrations (30 mmol·L-1 and 60 mmol·L-1) also significantly accelerated the mycelial growth of Alternaria sp.. However, p-hydroxybenzoic acid had an inhibitory effect on the growth of Pseudomonas sp., and the inhibitory effect increased with the increase of p-hydroxybenzoic acid concentration. Mixed phenolic acid and other single phenolic acids had no significant effect on the growth of Pseudomonas sp.. Therefore, phenolic acids, the root exudates of Tieguanyin tea plants, have different ecological effects on the key microbial communities in the rhizospheric soils, and are important factors causing the imbalance of microbial community structure and the increase of severe diseases and other continuous cropping obstacles. The research results provided a theoretical basis for further revealing the mechanism of continuous cropping obstacles in Tieguanyin tea plants.
    Reference | Related Articles | Metrics
    Effect of Bamboo Density on the Physiological Growth and Tea Quality of Tea Plants under the Moso Bamboo Forest
    ZHAO Jiancheng, NI Huijing, WANG Bo, CAI Chunju, YANG Zhenya
    Journal of Tea Science    2024, 44 (6): 928-940.   DOI: 10.13305/j.cnki.jts.2024.06.003
    Abstract148)      PDF(pc) (420KB)(170)       Save
    To explore the adaptive mechanism of physiological growth of tea plants under different bamboo density conditions, three treatments, namely T1, T2 and T3, were set in the natural mixed forest of moso bamboo (Phyllostachys edulis) and tea plants [Camellia sinensis (L.) O. Kuntze] in the Mogan mountain area of Zhejiang Province, with bamboo densities of 1 200 plants·hm-2, 1 800 plants·hm-2 and 2 400 plants·hm-2, respectively, and 3 000~3 300 plants·hm-2 as the control (CK). Tea yield was evaluated, nitrogen, phosphorus, nonstructural carbohydrates (NSC) and biomass distribution of tea tree were determined, root morphology, distribution and architecture were analyzed, and quality indicators of tea such as amino acids, theanine and tea polyphenols were tested after 2 years of cultivation. The results show that (1) compared to CK, T2 and T3 treatments significantly increased tea yield by 15.96% and 18.8%, respectively, increased biomass of leaves and lateral roots, and increased the nitrogen, phosphorus and NSC contents in leaves, (2) T1, T2 and T3 treatments significantly increased the root length, root surface area and root length ratio of the >0-1 mm diameter grade in 0-20 cm soil layer, reduced root diameter and root length ratio of thick roots (diameter>2 mm) in 0-20 cm soil layer, increased the contents of starch and soluble sugars in lateral roots, reduced the topological index of the whole root system and increased the root tips and root fractal dimension, (3) T1 and T2 treatments significantly increased the contents of amino acids, caffeine and tea polyphenols and water extract, and reduced the polyphenols-amino acid ratio. In conclusion, reasonable control of bamboo density can promote the growth of tea plants and improve the tea yield effectively. Tea plants promote the growth of leaves and lateral roots by increasing nitrogen, phosphorus and non-structural carbohydrate accumulation in leaves and lateral roots and promote root encroachment of surface soil space by increasing the proportion of fine roots, enhancing the root branch strength, reducing the cost of root construction to accommodate moderate closure conditions and interspecific competition strength. The conclusion can provide scientific basis for the management of innovation mode of tea plants under the moso bamboo forest.
    Reference | Related Articles | Metrics
    Studies on the Regulation of EGCG Biosynthesis in Tea Plants by Potassium Nutrition
    YANG Nan, LI Zhuan, LIU Meichen, MA Junjie, SHI Yuntao, WEI Xiangning, LIN Yangshun, MAO Yuyuan, GAO Shuilian
    Journal of Tea Science    2024, 44 (6): 887-900.   DOI: 10.13305/j.cnki.jts.2024.06.012
    Abstract157)      PDF(pc) (4009KB)(161)       Save
    Epigallocatechin gallate (EGCG) is an important flavor and health functional component in tea. Previous studies have found that EGCG biosynthesis in tea plants is affected by potassium nutrition, but the regulatory mechanism of its biosynthesis is currently unclear. This study used one year old tea seedlings of Huangdan as the experimental object, and set up 5 treatment groups (K1-K5), with K2SO4 concentrations of 0.4, 0.6, 0.8, 1.0 mmol∙L-1 and 1.2 mmol∙L-1 for irrigation, respectively. The joint analysis of transcriptomics and metabolomics shows that, under low-potassium treatment (K1), the flavonoid contents in the new shoots of tea plants accumulated significantly and the EGCG content reached the highest level, and the difference reached a significant level compared with that of the high potassium treatment (K5). The related metabolites of phenylalanine, cinnamic acid and p-coumaric acid on the EGCG synthesis pathway were up-regulated in the K4 or K5 treatments, whereas the downstream metabolites of the flavonoid pathway (dihydroquercetin, dihydromyricetin, colorless delphinidin pigment and epigallocatechin) were up-regulated in the K1 and K2 treatments. Under the influence of potassium nutrition, EGCG biosynthesis was positively regulated by a series of structural genes CsCHI, F3′5′H, CsF3H (CSS0019002), CsANS, CsANR, Csaro DE, CsSCPL, and transcription factor (MYB306), as well as negatively regulated by CsPAL, CsC4H, Cs4CL, CsCHS, CsF3H (CSS0016177), CsDFR (CSS0011557) and transcription factor (NAC83). It is thus clear that potassium nutrition regulates EGCG synthesis by affecting the expressions of key genes in tea plants, thereby affecting EGCG content. This study provided a scientific basis for the regulation of EGCG biosynthesis in tea plants by potassium nutrition.
    Reference | Related Articles | Metrics
    Research on Tea Bud Recognition Based on Improved YOLOv8n
    YANG Xiaowei, SHEN Qiang, LUO Jinlong, ZHANG Tuo, YANG Ting, DAI Yuqiao, LIU Zhongying, LI Qin, WANG Jialun
    Journal of Tea Science    2024, 44 (6): 949-959.   DOI: 10.13305/j.cnki.jts.2024.06.005
    Abstract177)      PDF(pc) (2530KB)(150)       Save
    Accurate recognition of tea buds in complex natural environment is one of the key technologies to realize intelligent picking of tea buds by agricultural robots. To address the problem of low recognition accuracy of tea buds in complex environment of tea gardens, a tea bud recognition method based on improved YOLOv8n was proposed. The Honor Mobile Phone was used to collect the RGB images of tea buds, and the image annotation of tea buds was completed. The labeled data was divided according to the 8∶1∶1 radio of the training set and test set. To effectively extract bud features and reduce model redundancy calculation and memory access, FasterNet was used to replace the backbone network of YOLOv8n model for feature extraction. To suppress the background information of the tea garden environment and enhance the feature extraction ability of tea buds, the global attention mechanism (GAM) module was introduced at the end of the backbone network (after the SPPF module). To further improve the recognition accuracy of tea buds, the Context Guided (CG) module was introduced into the Neck network to learn the joint features of local features and surrounding environment of tea buds. The improved YOLOV8n algorithm was trained and tested by using the constructed tea bud data set. The ablation experiments verify that the FasterNet network, GAM attention mechanism and CG module effectively improved the recognition accuracy of the YOLOv8n model. The mean average accuracy (mAP) of the improved YOLOv8n model on the multi-category tea bud data set was 94.3%. Compared with the original YOLOv8n model, the mAP of single bud, one bud and one leaf, and one bud and two leaves of tea buds increased by 2.2, 1.6 and 2.7 percentage points, respectively. The improved YOLOv8n model was tested for performance comparison with YOLOv3-tiny, YOLOv3, YOLOv5m, YOLOv7-tiny, YOLOv7 and YOLOv8n models. The experimental results show that the improved YOLOv8n model has a higher accuracy in identifying tea buds. The experimental results demonstrate that the improved YOLOv8n model can effectively improve the accuracy of tea bud recognition and provide technical support for intelligent tea picking robots.
    Reference | Related Articles | Metrics
    Changes in Cell Wall Structure and Photosynthetic Characteristics of Tea Leaves under Low Temperature Stress
    LIU Xiaolu, ZHU Yalan, YU Min, GAI Xinyue, FAN Yangen, SUN Ping, HUANG Xiaoqin
    Journal of Tea Science    2024, 44 (6): 917-927.   DOI: 10.13305/j.cnki.jts.2024.06.001
    Abstract240)      PDF(pc) (1851KB)(149)       Save
    To investigate the molecular mechanisms of tea plants in response to low temperature stress, this study simulated the spring chill temperature pattern, using ‘Fuding Dabaicha’ as the experimental material for transcriptome sequencing, and subjected it to varying low temperature treatments. Differentially expressed genes (DEGs) were analyzed using the GO and KEGG pathway databases for metabolic pathway enrichment analysis, which revealed that these genes were mainly enriched in plant cell wall and metabolic pathways related to photosynthesis. Subsequently, thirteen DEGs were selected for validation via real-time quantitative PCR (qPCR), confirming the consistency of the qPCR results with the transcriptome sequencing data, thereby validating the reliability of the transcriptome data. In a subsequent study, two tea cultivars, ‘Fuding Dabaicha’ and ‘Shuchazao’, were used to evaluate various physiological indices, including leaf tissue structure, the contents of various cell wall components (cellulose, hemicellulose, and pectin), chlorophyll content, and chlorophyll fluorescence parameters. The results indicate that the leaf tissue structures of both tea cultivars underwent different degrees of thickening in response to low-temperature stress. Notably, significant differences were observed in the contents of cellulose and hemicellulose between the two cultivars, whereas the pectin content change was less pronounced. Furthermore, the chlorophyll content, photochemical quenching coefficient, maximum photochemical efficiency, and relative electron transport rate all exhibited a downward trend. Conversely, the non-photochemical quenching coefficient showed an upward trend. These observations highlight the key role of changes in cell wall components, particularly hemicellulose, and changes in photosynthesis-related parameters in the tea plants’ response to low temperature.
    Reference | Related Articles | Metrics
    The Orientation and Landing of the Spiny Citrus Whiteflies Attracted by Tea Cultivar ‘Dahuangpao’
    WU Yiqi, CHENG Yanjun, LIANG Yueer, LU Jianliang, HAN Shanjie, HAN Baoyu
    Journal of Tea Science    2024, 44 (6): 941-948.   DOI: 10.13305/j.cnki.jts.2024.06.002
    Abstract125)      PDF(pc) (536KB)(137)       Save
    ‘Dahuangpao’ is a yellowing new tea elite cultivar with special yellow foliage. The adults of spiny citrus whitefly, Aleurocanthus spiniferus, is keen on flying to tea cultivars whose leaf color is bright and shining with yellow chroma being slightly high. Especially, the whiteflies preferred to directionally fly to and gather on ‘Dahuangpao’ tea shoots for mating, chasing, oviposition, piercing and sucking sap, secreting and resting. In order to reveal its taxis mechanism, the volatiles of the tea seedlings were collected by headspace aeration sampling method from which twenty compounds were identified. Among them methyl salicylate, linalool, cis-3-hexen-1-ol, n-hexanol and tran-2-hexenal significantly attracted the adults of the whiteflies in a Y-tube olfactometer bioassay, respectively. Within resting habitat in greenhouse, ‘Dahuangpao’ tea seedling models baited by the five infochemicals at equal ratio intensely attracted the adults in flight. This study demonstrated the five volatile compounds from ‘Dahuangpao’ tea seedlings were strongly attractive to the adults. And the combination of these volatiles with the special yellow leaf colour, and the shape of tea plants resulted in orientation and landing of adults onto ‘Dahuangpao’ tea plants.
    Reference | Related Articles | Metrics
    Assessment of Cultural Ecosystem Services of Xihu Longjing Tea Gardens based on Social Media Data
    YANG Hao, TANG Jianuan, DU Shuqi, ZHANG Dou, HU Guang
    Journal of Tea Science    2025, 45 (1): 169-180.   DOI: 10.13305/j.cnki.jts.2025.01.013
    Abstract153)      PDF(pc) (1339KB)(134)       Save
    As a regional agricultural and cultural landscape, tea gardens can not only produce high economic value, but also provide people with a variety of ecosystem cultural services such as recreation, education and spiritual healing. However, the efficient and accurate identification and quantification of the ecosystem cultural services of tea garden landscapes remain a challenging research issue. This study took the Xihu Longjing tea gardens in Hangzhou as a case study. By selecting travel blogs and short articles from online social media platforms such as Ctrip and Sina Weibo, and utilizing keyword frequency and semantic network analysis, we quantitatively assessed the ecosystem cultural services of the Xihu Longjing tea gardens based on public cultural perception. Grounded theory was used to construct an evaluation index system for the tea garden's ecosystem cultural services, and the Importance-Performance model was employed to analyze the structure and quality of tourists' cultural experience elements. The results indicate that tourists pay high attention to specific scenic spots, cultural perceptions, and environmental perceptions within the Xihu Longjing tea gardens. Their perceptions reflected a cultural cognitive model centered on the tea garden's attractions, with cultural experiences extending outward. Overall, tourists had a positive satisfaction rating towards the cultural services of the tea garden ecosystem, with the highest satisfaction related to the pleasure and relaxation experienced. However, there are significant perceptual differences in tourists' attention and satisfaction with different categories of cultural services in tea gardens, especially in the cultural service of ‘enjoying the beautiful scenery’ that tourists are most concerned about, their satisfaction is lower than the overall average level. Therefore, future planning and management should prioritize the enhancement and improvement of the aesthetic quality of the tea gardens. This paper proposed a method for identifying and evaluating the ecosystem cultural services of tea gardens using social media data from the public perception perspective. This approach proposed technical support for the optimization and sustainable, diversified development of tea gardens and other cultural landscapes.
    Reference | Related Articles | Metrics
    Neuroprotective Mechanisms of Aged Liupao Tea against Aβ25-35-induced PC12 Cell Damage
    NIE Qing, PANG Yuelan, WU Huan, DING Shuqia, ZHONG Keyu, LIU Zhonghua, CAI Shuxian
    Journal of Tea Science    2024, 44 (6): 1005-1013.   DOI: 10.13305/j.cnki.jts.20241203.001
    Abstract133)      PDF(pc) (1356KB)(132)       Save
    In this study, an Aβ25-35-induced PC12 cell damage model was established to investigate the neuroprotective effects and underlying mechanisms of aged Liupao tea (ALPT), with green tea (GT) as a reference. The results show that Aβ25-35 significantly reduced PC12 cell viability, induced mitochondrial dysfunction, and promoted the formation of toxic aggregates and related pathways. ALPT markedly improved cell survival, increased mitochondrial membrane potential, and significantly inhibited the accumulation of toxic aggregates and the formation of related pathways. Furthermore, transcriptome analysis reveals that the overall gene expression pattern in the ALPT treatment group was the opposite to that in the Aβ25-35 group, with upregulated genes involved in mitophagy, glycolysis and glycerophospholipid metabolism, and downregulated genes associated with cell cycle regulation, ribosomal function, ubiquitin-mediated proteolysis and cellular senescence. Overall, both GT and ALPT exhibited significant protective effects against Aβ25-35-induced PC12 cell damage, though transcriptomic differences suggest that ALPT may have superior bioavailability due to its active components. This study provided experimental evidence for the potential application of ALPT in the prevention and treatment of neurodegenerative diseases.
    Reference | Related Articles | Metrics
    Optimization and Application of Analysis Method for Volatile Enantiomers in ‘Jinxuan’ Roasted Green Tea
    ZHANG Shuyi, MA Chengying, CHEN Wei, MIAO Aiqing, QIAO Xiaoyan, LIN Dongchun, XIA Hongling, XU Jingyi
    Journal of Tea Science    2024, 44 (6): 973-984.   DOI: 10.13305/j.cnki.jts.2024.06.006
    Abstract149)      PDF(pc) (1542KB)(123)       Save
    To investigate the changes in volatile enantiomers during the drying of ‘Jinxuan’ roasted green tea, an optimized method using headspace solid-phase microextraction-enantioselective-gas chromatography-mass spectrometry (HS-SPME-Es-GC-MS) was applied for qualitative and quantitative enantiomer analysis. The chemometric evaluation was also performed on four roasted green tea samples dried at 120 ℃ for different durations (30 min, 60 min, 90 min and 120 min). The optimal HS-SPME conditions were found to be: addition of NaCl (3 mL, 3 mol·L-1, solid-to-liquid ratio of 1∶6, extraction temperature of 60 ℃, and extraction time of 25 min. The optimal temperature program for Es-GC-MS was as follows: initial temperature at 35 ℃ held for 2 min, then ramped up to 110 ℃ at 4 ℃ min-1 and held for 10 min, followed by a further increase to 210 ℃ at 4 ℃ min-1. Using an optimized method to analyze four ‘Jinxuan’ roasted green tea samples, a total of 8 enantiomers were detected, with no change in the types as drying time increased. Among them, the contents of R-(-)-linalool and S-(+)-linalool increased with the drying process, while the contents of the other 6 enantiomers began to decline after 60 min or 90 min. Hierarchical cluster analysis and partial least squares discrimination analysis show that the samples with different drying times were obviously classified into four groups. Based on variable importance in projection (VIP) >1 and significance analysis, four different enantiomers were screened, and their VIP values were ranked in descending order as R-(-)-linalool, (2R,5S)-theaspirane B, (2R,5R)-theaspirane A, and S-(+)-linalool. This study provided a reference for improving aroma quality and selecting drying processes during the roasting of green tea.
    Reference | Related Articles | Metrics
    Comparative Metabolome Analysis of the Main Chemical Compositions in Qingzhuan Tea with Different Storage Years
    MA Mengjun, HU Xinlong, QIU Shouzhe, ZHANG Ruiming, TANG Huishan, LIU Chen, YU Ziming, LI Jing, WANG Mingle
    Journal of Tea Science    2025, 45 (1): 133-144.   DOI: 10.13305/j.cnki.jts.2025.01.011
    Abstract157)      PDF(pc) (1968KB)(114)       Save
    In order to investigate the effects of storage years on the quality of Qingzhuan tea, 5 samples produced in 2022, 2019, 2014, 2009 and 2002 were analyzed by tea sensory evaluation combined with ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. The sensory evaluation results show that with the extension of storage time, the appearance of Qingzhuan tea was gradually browning, the color of tea infusion was deepened, the aging flavor was progressively unveiled and the taste became more mellow, resulting in the quality improvement of Qingzhuan tea. Further metabolome analysis reveals that a total of 189 kinds of characteristic compounds were identified from Qingzhuan tea samples, which mainly included flavonoids, organic acids, amino acids, alkaloids and catechins. Moreover, 26 key differentially accumulated metabolites were identified using partial least squares-discriminant analysis (PLS-DA), including 5 alkaloids, 2 amino acids, 8 catechins, 9 flavonoids, 1 organic acid and 1 pigment substance. Among them, the contents of 8 catechin monomers decreased with the extension of storage years, while the contents of 7 flavonoids initially increased and subsequently decreased during the aging years. Hence, it was speculated that the two kinds of substances might result in the quality difference of Qingzhuan tea with different storage years. In addition, the contents of caffeic acid, lactobionic acid, linolenic acid, theophylline and betaine increased with the extension of aging years, which might also contribute to the nutrition and drinking value of Qingzhuan tea. In summary, this study analyzed the effect of aging time on the quality components of Qingzhuan tea, which shed light on the aging process of Qingzhuan tea.
    Reference | Related Articles | Metrics
    Simultaneous Determination of 27 Pyrrolizidine Alkaloids in Tea by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry with Integrated QuEChERS Purification
    YAO Leijun, CHEN Yanqiu, LIN Hao, WANG Luyao, SHI Peiyu, ZHANG Yangyang, HUANG Ting, SONG Juan, WANG Yi, DAI Qin, LIU Chuan
    Journal of Tea Science    2024, 44 (5): 831-842.   DOI: 10.13305/j.cnki.jts.2024.05.005
    Abstract186)      PDF(pc) (674KB)(111)       Save
    In this study, an integrated QuEChERS purification-ultra-performance liquid chromatography-tandem mass spectrometry method was established to detect 27 pyrrolizidine alkaloids (PAs) in tea, taking into account the residual risk of PAs in tea and the challenges of traditional QuEChERS. The method involves extracting the sample with 1% formic acid in acetonitrile, salting out using the centrifuge tube integrated salt bag and Down-Pressure QuEChERS Cleanup, detecting by multiple reaction monitoring mode (MRM), and quantifying it using the matrix-matched external standard method. The 27 PAs exhibit a strong linear relationship within their concentration ranges, with average recovery rates ranging from 73.0% to 111.8% and relative standard deviations from 1.6% to 13.8% (n=6). This method has the characteristics of simple operation, large detection throughput, high sensitivity, and reduction of repeated opening of the traditional QuEChERS, meeting the monitoring requirements for PAs in tea. During the actual testing of 60 batches of samples, different levels of PAs were detected in some tea samples, proving that there is indeed a risk of these plant toxins in tea, and continuous monitoring and tracking is recommended.
    Reference | Related Articles | Metrics
    Community Composition and Diversity of Ladybirds (Coleoptera, Coccinellidae) at Different Altitudes in Chaozhou Dancong Tea Regions
    LI Zailin, PENG Feng, WANG Xingmin, CHEN Xiaosheng
    Journal of Tea Science    2025, 45 (1): 99-109.   DOI: 10.13305/j.cnki.jts.2025.01.012
    Abstract107)      PDF(pc) (437KB)(96)       Save
    In order to clarify the community composition and species diversity of ladybirds (Coleoptera, Coccinellidae) in the Chaozhou Dancong tea region, the species diversity of the family Coccinellidae was investigated in tea gardens at different altitudes. This study used comparative morphology and biodiversity index analysis methods to analyze the species composition, community structure, dominant species, relative abundance, and community diversity index of ladybirds from tea gardens at different altitudes, aiming to explore the relationship between ladybird communities and altitudes in the Chaozhou tea regions. A total of 63 sampling sites were set up for the investigation of ladybirds as natural enemies in tea gardens, with a collection of 1 132 specimens identified into 45 species belonging to 26 genera in 12 tribes. The results show that Sasajiscymnus kuriharai Kitano, 2012 was the dominant species of ladybird community in the Chaozhou tea region, with a relative abundance reaching 50.80%. Furthermore, the analysis results of biodiversity indices of ladybird community at different altitudes reveal that the low-altitude tea gardens had the richest species diversity among these communities with higher values for diversity index (2.48), richness index (5.07) and evenness index (0.73), while having the lowest dominance index (0.17). These results suggest that there is a more stable ladybird community with rich species, even distribution and balanced competitive relationships exists in the low-altitude regions encompassing Chaozhou’s tea gardens. These findings provided a theoretical basis for green pest control and ecological conservation practices in the Chaozhou Dancong tea region.
    Reference | Related Articles | Metrics
    Research on Performance Optimization of Tea Residue Powder-Based Triboelectric Nanogenerator and It’s Application in Wind Monitoring System
    LIN Dongyi, HUANG Chong, WANG Weiming, HUANG Yan, FENG Xinkai
    Journal of Tea Science    2025, 45 (1): 121-132.   DOI: 10.13305/j.cnki.jts.2025.01.010
    Abstract101)      PDF(pc) (2928KB)(84)       Save
    A new type of tea residue powder based triboelectric nanogenerator (TRP-TENG) was developed, and a smart wind monitoring device was developed based on it. During the experimental process, tea residue ultrafine powders with different degrees of fermentation were used as friction film materials to prepare different triboelectric nanogenerators. The differences in electrical output performance were tested and compared on a horizontal reciprocating stamping platform to find the optimal material for TRP-TENG and to optimize the device. On this basis, further testing and analysis were conducted on the optimized TRP-TENG in terms of frequency response, load characteristics, sustainability, and power supply capacity to evaluate its feasibility for application in wind monitoring devices. The experimental results show that the TRP-TENG developed with white tea residue as the material had the best electrical output performance, with an open-circuit voltage and short-circuit current of 9.1 V and 4.4 µA, respectively, and had a certain degree of stability. The contents of tea polyphenols and catechins in white tea residue were relatively high, while the contents of tea pigments were low. The corresponding TRP film had a loose and porous concave-convex surface microstructure, which could effectively increase the contact area and help improve the electrical output performance of TENG. This TRP-TENG could adapt to various vibration frequency working environments, and when the external resistance was 50 MΩ, the electrical output power reached 108.0 µW. At a driving frequency of 3 Hz, it could simultaneously light up 5 series connected commercial LED lights, and it could make the electronic timer work continuously for 15 s after charging the 10 µF capacitor for 5 min. In terms of application, a self-powered wind monitoring device was developed based on four series of connected TRP-TENG components. The test results show that this device has a significant response sensitivity to wind speed and can be applied to smart agriculture systems.
    Reference | Related Articles | Metrics
    Leaching Behavior and Risk Assessment of Seven Different Polar Pesticides in Green Tea during Brewing
    XU Jinping, DU Xuemei, LÜ Wanyi, ZHU Lei, ZHANG Danyang, CHEN Hongping, CHEN Ling, CHAI Yunfeng
    Journal of Tea Science    2025, 45 (1): 157-168.   DOI: 10.13305/j.cnki.jts.2025.01.005
    Abstract125)      PDF(pc) (281KB)(83)       Save
    Seven pesticides, including dinotefuran, difenoconazole, tolfenpyrad, chlorfenapyr, bifenthrin, diafenthiuron and glyphosate are registered and widely used as chemical pesticides on tea plants in China. These pesticides are key monitoring objects for pesticide residue risk assessment in tea. In this study, gas chromatography and ultra-high performance liquid chromatography tandem mass spectrometry were used to monitor the leaching rates of seven pesticides during green tea brewing. The results show that the leaching rates of pesticides in tea infusion were related to water solubility and octanol/water partition coefficient. Dinotefuran and glyphosate were easily soluble in water, so their average leaching rates in tea infusion were higher than 70%. The water solubilities of the other five pesticides were lower, and their average leaching rates were less than 11.3%. There were significant differences in the leaching rates of different pesticides during the first and second infusions. With the exception of bifenthrin, the average leaching rates of other six pesticides of the first infusion were 0.89-2.55 times that of the second infusion. A risk assessment of green tea made from fresh leaves 10 days after pesticide spraying was performed. According to the toxicity and human exposure risk assessment of pesticides, the risk of human health impact from ingesting seven residual pesticides through drinking green tea soup was relatively low, and the cumulative hazard quotient of the seven pesticides was only 4.1%.
    Reference | Related Articles | Metrics
    Screening of Phosphate-solubilizing Bacteria in the Rhizosphere of Tea Gardens and Their Effects on Tea Yield, Quality and Soil Properties
    MA Xueqing, WU Huawei, CAO Chunxia, ZHENG Jiaoli
    Journal of Tea Science    2025, 45 (1): 110-120.   DOI: 10.13305/j.cnki.jts.2025.01.001
    Abstract157)      PDF(pc) (550KB)(76)       Save
    The purpose of this study was to screen phosphate-solubilizing bacteria with the ability to produce indoleacetic acid (IAA) from the rhizosphere of tea gardens. The rhizosphere soil was collected from Yingshan Couty and Enshi Tujia and Miao Autonomous Prefecture tea gardens in Hubei Province, and the phosphate-solubilizing bacteria were screened by plate transparent circle method. The phosphate-solubilizing and IAA-producing abilities were used as indicators for re-screening. The strains were identified by morphological characteristics and 16 S rDNA sequence analysis, and their growth-promoting characteristics were studied. The effects of strains on tea yield, quality and soil properties were studied by field experiments. The results show that the phosphate-solubilizing bacterium DFP-24 screened from the rhizosphere soil of tea plants had good IAA-producing ability and was identified as Burkholderia arboris. At the same time, the strain had the growth-promoting characteristics such as siderophore production, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production and nitrogen fixation ability. Field experiments show that the application of DFP-24 strain could increase the density of tea buds, significantly increase the total phosphorus content of tea, increase the free amino acid content of tea, reduce the ratio of phenol to ammonia, affect the quality of tea, and improve the soil properties. In summary, the strain DFP-24 has the application potential to develop microbial fertilizers. The research results could provide strain resources and theoretical basis for the development and application of rhizosphere growth-promoting bacterial fertilizer for tea plants.
    Reference | Related Articles | Metrics
    Bioinformatic Analysis of DREB Genes and Regulation of CsPOD3 on Drought Tolerance Mechanisms in Camellia sinensis
    XU Rong, DENG Zhiying, SHAO Chenyu, LUO Yuqi, QIU Shuqi, WANG Cong, ZHOU Linghong, LIU Zhonghua, SHEN Chengwen
    Journal of Tea Science    2025, 45 (1): 29-42.   DOI: 10.13305/j.cnki.jts.2025.01.002
    Abstract172)      PDF(pc) (1570KB)(75)       Save
    Based on the previous transcriptome data of the research group, three genes, CsDREB11, CsDREB15, and CsDREB25, were screened. Verified by RT-qPCR, their expressions were induced by drought. The phylogenetic tree, physical and chemical properties, hydrophilicity/hydrophobicity, secondary and tertiary structures, and subcellular localization were predicted and analyzed. The results show that CsDREB11, CsDREB15, and CsDREB25 are most closely related to their homolog genes in Camellia lanceoleosa. They are all unstable hydrophilic proteins. Random coils and α-helices dominate the secondary/tertiary structures. Their subcellular localizations are located in the nucleus. The preliminary study of the subject found that both CsDREB25 and CsPOD3 were highly expressed and significantly correlated under drought conditions, suggesting that there was an interaction between them. Through Y1H, DLA, and LCI experiments, it was verified that CsDREB25 can positively regulate the expression of CsPOD3, increase the activity of POD, remove excessive reactive oxygen species, and improve the drought tolerance of tea plants.
    Reference | Related Articles | Metrics
    Predation and Predilection of Eocanthecona furcellata to Larvae of Scopula subpunctaria (Lepidoptera: Geometridae)
    CHEN Junhua, WEN Xinru, WANG Chenxu, ZHANG Qiaoqiao, LIU Hongmin, NING Wanguang, GUO Shibao
    Journal of Tea Science    2025, 45 (1): 87-98.   DOI: 10.13305/j.cnki.jts.2025.01.009
    Abstract99)      PDF(pc) (441KB)(70)       Save
    The present study aimed to evaluate the biological control potential of Eocanthecona furcellata against the 2nd to 4th instar Scopula subpunctaria larvae. Indoor experiments were conducted to determine the predatory functional responses and searching efficiency of male and female adults of E. furcellata on 2nd-4th instar S. subpunctaria larvae. Additionally, the intraspecific interference effects of male and female adults of E. furcellata on the 3rd-4th instar S. subpunctaria larvae were investigated, as well as the predatory preferences of male and female adults of E. furcellata and 5th instar nymphs towards larvae of Ectropis grisescens and S. subpunctaria . The results show that both male and female adults of the E. furcellata were able to prey on the 2nd-4th instar S. subpunctaria larvae, and the predation response was consistent with the Holling Ⅱ and Holling Ⅲ models. The control efficiency of male and female adults of the E. furcellat against the S. subpunctaria is shown as female adults>male adults, with the female adult of the E. furcellat having the highest control efficiency against the 2nd instar S. subpunctaria (37.044). In the fitted Holling Ⅲ model, the daily maximum predation rates for the 2nd instar S. subpunctaria larvae were 15.823 and 12.547, respectively, and the optimal searching densities were 4.971 and 6.836 per box, respectively. The searching effect of the E. furcellat on S. subpunctaria larvae indicates that the searching efficiency gradually increased with the decrease of prey density. In addition, in the presence of both the E. grisesens and the S. subpunctaria, both male and female adults and 5th instar nymphs of E. furcellata preferred to feed on the S. subpunctaria larvae. At the same time, the predation of S. subpunctaria larvae by male and female adults of the E. furcella was affected by their own density, and the interference coefficient when preying on the 3rd instar S. subpunctaria larvae was greater than that preying on the 4th instar S. subpunctaria larvae. This result provided a research basis for the biological control application of the E. furcellat in tea gardens.
    Reference | Related Articles | Metrics
    Analysis of the Structural Characteristics and Codon Usage Biase of the Mitochondrial Genome in Tea Cultivar ‘Damianbai’
    YIN Minghua, ZHANG Mutong, XU Zilin, OUYANG Qian, WANG Meixuan, LI Wenting
    Journal of Tea Science    2025, 45 (1): 61-78.   DOI: 10.13305/j.cnki.jts.2025.01.006
    Abstract110)      PDF(pc) (10684KB)(62)       Save
    Camellia sinensis cv. ‘Damianbai’ is a national cultivar in Guangxin District, Shangrao. Its mitochondrial genome structure and codon preference are still unclear. Using ‘Damianbai’ as the experimental material, high-throughput sequencing technology was used to sequence, assemble, and annotate the entire mitochondrial genome of ‘Damianbai’. Bioinformatics software was used to analyze the structural characteristics and codon preferences of its mitochondrial genome. The results show that the mitochondrial genome of ‘Damianbai’ was 886 354 bp in length, with a complete single circular molecule structure and a GC content of 45.76%. A total of 78 functional genes were annotated in the mitochondrial genome of ‘Damianbai’, including 41 protein-coding genes, 33 tRNA genes and 4 rRNA genes. A total of 59 SSRs (mainly A/T single nucleotide repeats) and 100 Long repeats (mainly positive and palindromic repeats) were detected in the mitochondrial genome of ‘Damianbai’. The codon bias of the mitochondrial genome in ‘Damianbai’ is relatively weak, with a preference for codons ending in A or U. The codon usage bias of the mitochondrial genome of ‘Damianbai’ is mainly influenced by natural selection, and is less affected by internal mutation pressure. The optimal codons for the mitochondrial genome of ‘Damianbai’ are 14 (AAU, GAU, CAU, UUU, AUU, GCU, GGA, ACU, GUU, CGA, UUA, UUG, UCA, UCU). The mitochondrial genomes of 11 closely related species exhibit high homology with the mitochondrial genome of ‘Damianbai’ in the gene region. The mitochondrial genomes of ‘Damianbai’ and ‘Lingyunbaihao’ (ON782577) have the highest collinearity, and their gene arrangement orders are basically the same. There are 62 highly homologous gene fragments between the mitochondrial genome and chloroplast genome of ‘Damianbai’. ‘Damianbai’ and ‘Lingyunbaihao’ belong to a small branch separately, indicating they are closely related. This study analyzed the mitochondrial genome sequence characteristics and phylogenetic relationships of ‘Damianbai’, providing a reference for strengthening the identification of ‘Damianbai’ germplasm and the development and utilization of its resource diversity.
    Reference | Related Articles | Metrics
    Cloning of BZR1 Gene Family in Tea Plants and Molecular Mechanism Study of CsBZR1-5 Response to Drought Stress
    DONG Yuan, ZHANG Yongheng, XIAO Yezi, YU Youben
    Journal of Tea Science    2025, 45 (1): 15-28.   DOI: 10.13305/j.cnki.jts.2025.01.004
    Abstract149)      PDF(pc) (1374KB)(61)       Save
    The BZR1 transcription factor is a key transcription factor in the brassinosteroid (BR) signaling pathway, playing an important regulatory role in plant growth, development, and stress response. This study identified and cloned six members of the BZR1 family in tea plants based on genomic data. Their gene structures, subcellular localization of encoded proteins, and transcriptional activation activities were analyzed, and their expression patterns under different tissues and drought stress were explored. The results show that the number of introns in the 6 BZR1 members of tea plants was 2 or 3, and their encoded proteins all contained typical bHLH characteristic structural domains. Subcellular localization analysis shows that except for CsBZR1-1, which was localized in the cytoplasm and nucleus, all other CsBZR1s were localized in the nucleus. Transcriptional activation activity analysis shows that CsBZR1s exhibited transcriptional activation activity in yeast. The analysis of expression patterns in different tissues shows that CsBZR1s had specificity in expression in different tissues of tea plants, among which the expression patterns of CsBZR1-1 and CsBZR1-6 were relatively similar. The expression pattern analysis under drought stress shows that all six CsBZR1 genes were responsive to drought stress. The expression of CsBZR1-5 was continuously induced by drought stress simulated by PEG. In addition, the expression pattern of the key enzyme gene CsNCED1 in ABA synthesis pathway was highly similar to that of CsBZR1-5 under drought stress. The analysis of Electrophoretic Mobility Shift Assay (EMSA) found that CsBZR1-5 can bind to the E-box element on the CsNCED1 promoter, indicating that CsBZR1-5 may be involved in regulating the response of CsNCED1 to drought stress. This study systematically analyzed the basic characteristics and functions of six CsBZR1 members, laying the foundation for further elucidating the regulatory roles of CsBZR1 members in tea plant growth and development and drought stress response.
    Reference | Related Articles | Metrics
    Identification of Tea ICE Gene Family and Cloning and Expression Analysis of CsICE43 under Low-temperature
    ZHU Qian, SHAO Chenyu, ZHOU Biao, LIU Shuoqian, LIU Zhonghua, TIAN Na
    Journal of Tea Science    2025, 45 (1): 43-60.   DOI: 10.13305/j.cnki.jts.2025.01.007
    Abstract127)      PDF(pc) (2782KB)(58)       Save
    In recent years, extreme low-temperature weather has frequently occurred worldwide, significantly affecting the yield and quality of tea plants. The ICE (Inducer of CBF expression) gene family plays a crucial role in the low-temperature stress response of plants. However, research specifically focused on tea plants is still limited. This study identified 51 ICE genes from the tea genome and performed a bioinformatics analysis to examine their physical and chemical properties, gene structure, and promoter cis-acting elements. The promoter regions of the CsICE genes are rich in cis-acting elements related to light response, plant hormones, growth and development, and abiotic stress, suggesting their involvement in various stress responses. Transcriptome analysis and RT-qPCR verification indicate that the expression of the CsICE43 increased 4.24 folds under low-temperature conditions, highlighting its potential role in the low-temperature response of tea plants. To further investigate this, the cDNA of tea cultivar‘Baojing Golden Tea No. 1’ was used as a template to clone the CsICE43 gene. Its expression varied across tissues, with exceptionally high levels observed in terminal buds and young leaves. Further amino acid sequence and phylogenetic tree analysis indicate that the CsICE43 gene contains conserved domains such as S-rich, bHLH, and ACT, which are consistent with other members of the ICE family. It is closely related to Actinidia eriantha. The STRING online database utilized Arabidopsis thaliana AtICEs to hypothesize potential interactions between CsICE proteins and HOS1, MYB15, and DREB1/2. Subcellular localization experiments demonstrate that CsICE43 is located in the nucleus, which is consistent with the findings from the transmembrane structure analysis. In summary, this study suggests that the CsICE43 gene may be associated with the low-temperature response in tea plants, providing a theoretical foundation for further exploration of its gene function and the molecular mechanisms underlying cold resistance.
    Reference | Related Articles | Metrics
    Study on the Effect of Epigallocatechin Gallate Against Hantaan Virus
    LUO Lulu, ZHAO Yuexi, WANG Yanbo, XING Yi, QI Yang, MA Hongwei, CHENG Linfeng, ZHANG Fanglin
    Journal of Tea Science    2025, 45 (1): 145-156.   DOI: 10.13305/j.cnki.jts.2025.01.014
    Abstract107)      PDF(pc) (2046KB)(58)       Save
    The purpose of this study was to investigate the inhibitory effect of epigallocatechin gallate (EGCG) on the Hantaan virus (HTNV) both in vitro and in vivo, and to identify the potential targets of EGCG against HTNV using molecular docking. First, the cytotoxicity of EGCG was determined using a cell viability assay. Then, EGCG was administered for treatment at different time points during HTNV infection, and the viral expression of HTNV in A549 cells was detected by western blotting, real-time PCR, indirect immunofluorescence, and focus formation assay (FFA) at 24 h and 48 h. Molecular docking was conducted using Autodock Vina software. Finally, the challenged nude mice were administered high, medium, and low doses of EGCG via gavage, and their body weight and survival rates were measured. The results indicate that the administration of 100 μmol·L-1 EGCG effectively inhibited HTNV infection in vitro, primarily affecting the adsorption stage of HTNV. The molecular docking results demonstrate that EGCG could interact with HTNV Gn and Gc, with binding energies of ﹣9.0 kcal·mol-1 and ﹣7.1 kcal·mol-1, respectively. High, medium, and low doses of EGCG (50.0, 25.0, 12.5 mg·kg-1) effectively reduced the mortality rate of challenged nude mice, and significantly mitigated weight loss in these mice.
    Reference | Related Articles | Metrics
    Determination of the Larval Instar Numbers of the Ectropis grisescens at Different Temperatures
    TANG Meijun, LI Hong, ZHANG Xinxin, JIANG Hongxin, WANG Zhibo, GUO Huawei, XIAO Qiang
    Journal of Tea Science    2025, 45 (1): 79-86.   DOI: 10.13305/j.cnki.jts.2025.01.008
    Abstract127)      PDF(pc) (626KB)(51)       Save
    Ectropis grisescens is one of the most harmful pests in tea plantations, characterized by its frequent annual occurrences and considerable damage. The understanding of the larval instar number remains still elusive. To clarify the relationship between the larval instars of Ectropis grisescens and temperature, the differences in larval instar and the fertility indexes including developmental duration, pupal weight and sex ratio of different larval instar populations were measured at five different temperatures ( 21, 23, 25, 27, 29 ℃) in the climate incubators. The results show that the E. grisescens were 4 (molting 3 times, referred to as the 4th instar) or 5 (molting 4 times, referred to as the 5th instar) larval instars at each temperature from 21 ℃ to 29 ℃. At 21 ℃ and 23 ℃, there was no significant differences between the proportion of 5th instar and 4th instar. When the temperature exceeded 25 ℃, the proportion of 5th instar was significantly higher than that of 4th instar, reaching 67.4%-78.6%. Temperature had a significant effect on the developmental duration, pupal weight of the 5th and 4th instars, but had no significant effect on the sex ratio of male and female. At the same temperature, the larval period of the 5th instar was longer than the 4th instar, the pupal weight increased, and the sex ratio increased significantly. This study indicates that the larval instars of E. grisescens were 4 or 5, and the proportion of 5th instar larvae increased with the increase of temperature. This may be a survival strategy of E. grisescens to deal with adverse environment.
    Reference | Related Articles | Metrics
    Research Progress on Foam Generation Mechanism and Control Technology of Tea Beverages
    HUANG Shanyoumei, LIN Dongyi, MA Chengying, RONG Jiefeng, SUN Weijiang, HUANG Yan
    Journal of Tea Science    2025, 45 (2): 181-190.   DOI: 10.13305/j.cnki.jts.20250311.001
    Abstract84)      PDF(pc) (420KB)(48)       Save
    During the processing of tea beverages, a considerable amount of foam is generated, which adversely affects the quality, stability, and appearance of the products and is a major challenge for the industry. Proper understanding and management of the causes of foam generation and control technologies are critical to optimizing the production process. This article systematically examined the fundamental theory of foam generation and analyzed the impact of various factors such as tea components, temperature and pH levels on this process. Additionally, it outlined different methods for foam elimination, discussed defoaming principles, and categorized commonly used anti-foaming agents in the food industry, intending to provide valuable references for optimizing tea beverage processing technology.
    Reference | Related Articles | Metrics
    Spatiotemporal Changes of Amino Acids and Polyphenols in Leaves and Stems during Tea Withering
    CHENG Haiyan, TU Linyue, CHEN Lin, XU An'an, XIE Hengtong, XU Ping
    Journal of Tea Science    2025, 45 (2): 303-317.   DOI: 10.13305/j.cnki.jts.2025.02.009
    Abstract44)      PDF(pc) (3576KB)(25)       Save
    Changes in amino acids and polyphenols in leaves and stems during withering are critical for the formation of the material basis of tea flavor. This study systematically analyzed the differential accumulation patterns of amino acids and polyphenols in tea leaves and stems , as well as their changes during withering. The results show that the phenol-ammonia ratio in the leaves (4.66-6.36) was higher than that in the stems (1.97-2.59) during withering. The free amino acid content in tender stems (7.44%) was significantly higher than that in fresh leaves (2.22%). A total of 44 amino acids and their derivatives show differential accumulation between the two tissues, of which three (theanine, aminobutyric acid, and pipecolic acid) were found to be highly accumulated in the stems. No significant difference in total tea polyphenol content was observed between fresh leaves and tender stems. However, 97 polyphenolic compounds show differential accumulation between the two tissues. Gallate-type catechins and most flavonols and flavonol glycosides were more highly accumulated in the leaves, whereas non-gallate-type catechins were more abundant in the stems. During the withering process, the total content of free amino acids increased in the leaves but it continued to decrease in the stems. A total of 21 and 15 amino acids and derivatives underwent significant changes during the withering process in leaves and stems, respectively. The changing trends of tea polyphenol content in leaves and stems were relatively consistent, with 49 and 35 polyphenolic compounds showing significant changes during withering, respectively. The results of this study indicate that the leaf-stem ratio in tea raw materials plays a critical role in the formation of tea quality during subsequent processing, providing a theoretical basis for the development of withering regulation technologies based on leaf-to-stem ratio considerations.
    Reference | Related Articles | Metrics
    Visualisation Research of Anhua Dark Tea Cultural Gene Map
    ZHANG Lichun, XIAO Lizheng, NIU Li, WU Bo, ZHU Haiyan, LIU Zhonghua
    Journal of Tea Science    2025, 45 (2): 346-360.  
    Abstract44)      PDF(pc) (1409KB)(24)       Save
    Anhua dark tea embodies a profound culture that holds immense historical and practical value. This study applies the “cultural gene theory” and adheres to four identification principles: intrinsic uniqueness, extrinsic uniqueness, local distinctiveness, and overall superiority. It explores ecology, production, product, as well as storage and transport “genes” at the material cultural levels. In addition, it explores life-related, art, history humanities and spiritual core “genes” at the spiritual cultural level. This study extracted cultural elements, collected instances of these elements, and constructed an ontology model with the Protégé software. It presented the relational and hierarchical relationships of Anhua dark tea culture through visualization techniques, achieving the visualization of the cultural gene map of Anhua dark tea, and analyzed its application value in cultural inheritance, artistic aesthetics and brand building.
    Reference | Related Articles | Metrics
    Study on the Genetic Diversity of 78 Tea Germplasm Resources in Hunan Based on Agronomic Traits and SNP Molecular Markers
    GUO Jialu, QU Furong, CAI Tianchen, ZHAO Yang, YANG Peidi, LIU Yong, ZHOU Yuebin, LIU Zhen
    Journal of Tea Science    2025, 45 (2): 219-233.   DOI: 10.13305/j.cnki.jts.2025.02.002
    Abstract40)      PDF(pc) (1898KB)(20)       Save
    To clarify the genetic diversity of tea germplasm resources in Hunan Province, explore the genetic structure of germplasm resources for accurate identification and evaluation, genotyping by targeted sequencing (GBTS) was used to genotype and analyze the genetic diversity of 76 252 SNP loci in 78 tea germplasm resources in Hunan Province. A total of 30 agronomic traits and 15 biochemical components of this batch of resources were accurately identified. The results show that there was abundant genetic variation among 78 tea germplasm resources in Hunan Province, with a genetic diversity index of 0.07-2.08 for phenotypic traits and a coefficient of variation of 2.26%-47.50%. The smallest was the number of calyxs and the largest was the depth of leaf serration. The genetic diversity index of the biochemical components was 1.36-2.09, and the coefficient of variation was 5.90%-118.49%, with the smallest being water extract and the largest being gallic acid. When the Euclidean distance was 20, the 78 tea germplasm resources could be divided into five groups, and there were significant differences in leaf length, leaf size, leaf base shape, ratio of polyphenols/amino acids, GA, THEO, GC, EGC, EC, EGCG, GCG and ECG in groups Ⅰ and Ⅲ. Based on the genotype detection results of 78 resources, a phylogenetic tree was constructed, and 78 resources could be divided into three groups. At the same time, this study identified 23 tea resources with specific phenotypic traits, high levels of functional components such as amino acids, theobromine and caffeine. The results of this study could provide a basis for the protection and utilization of tea germplasm resources in Hunan.
    Reference | Related Articles | Metrics
    Identification of the L-type Lectin Receptor Kinase Gene Family in Camellia sinensis and Its Response to Tea Brown Blight and Tea Anthracnose
    LI Yuexin, YAN Donghai, ZHANG Jinfeng, PU Yundan, LI Shuai, MENG Zehong
    Journal of Tea Science    2025, 45 (2): 253-265.   DOI: 10.13305/j.cnki.jts.2025.02.001
    Abstract36)      PDF(pc) (4483KB)(15)       Save
    L-type lectin receptor-like kinases (LecRKs) constitute a significant subfamily of plant receptor-like kinases, playing pivotal roles in plant development and immune responses. In this study, the CsLecRK gene family was systematically identified and analyzed in Camellia sinensis to explore their functions in growth, development and disease resistance. A total of 59 L-type CsLecRKs containing PF00069 and PF00139 domains were identified through HMMsearch analysis. Phylogenetic analysis shows these genes could be classified into 5 subgroups, revealing notable differences in exon-intron structures among the subgroups. Promoter region analysis shows enrichment of cis-acting elements associated with hormone responses and stress signaling pathways. Transcriptome data reveals that L-type CsLecRKs exhibited differential expressions in different tea plant tissues. qRT-PCR validation demonstrates that CsLecRK IV.1.2 and CsLecRK S.5 were significantly upregulated during the early stage of Colletotrichum camelliae infection and the later stages of Pestalotiopsis spp. infection. Notably, their expression levels were substantially higher in the resistant cultivar ‘Qianmei 419’ compared to the susceptible cultivar ‘Qianmei 818’, indicating their critical involvement in the immune response to pathogen infection. This study highlighted the critical mechanisms of L-type CsLecRKs in tea plant defenses against brown blight and anthracnose, elucidated the expression profiles of CsLecRK IV.1.2 and CsLecRK S.5 during pathogen infection, and demonstrated their potential to enhance disease resistance by activating the tea plant immune system. These findings provided valuable genetic resources and theoretical support for molecular breeding as well as green disease control strategies in tea plants.
    Reference | Related Articles | Metrics
    The Impacts and Regulatory Mechanisms of Forest Conversion to Tea Plantations and Their Management on Soil Carbon and Nitrogen Pools
    HUANG Fuyin, ZHANG Shaobo, HU Qiang, LUO Ying, DONG Yajie, ZHANG Jie, LI Xin, FU Jianyu, WANG Huasen, YAN Peng
    Journal of Tea Science    2025, 45 (2): 234-252.   DOI: 10.13305/j.cnki.jts.2025.02.004
    Abstract44)      PDF(pc) (3259KB)(14)       Save
    This study investigated how the conversion of forests to tea plantations and associated management practices affect the dynamics of carbon (C) and nitrogen (N) fractions across soil profiles in tea agroecosystems, with a focus on fungal community-mediated regulatory mechanisms. We compared forest soils with tea plantation soils under low-, medium-, and high-intensity fertilization regimes. Soil cores were systematically collected from four depth intervals (0-10 cm, 10-20 cm, 20-40 cm, and 40-60 cm) to analyze vertical stratification of C/N fractions, nutrient stoichiometry, and fungal community composition. The results reveal that tea plantations management significantly enhanced soil organic carbon and total nitrogen contents in the 0-10 cm soil layer compared to forest soil. Under high-input conditions, total carbon and nitrogen reached 46.57 g·kg-1 and 5.13 g·kg-1, respectively, increasing by 68.12% and 88.60% compared to low-input tea plantations. Land-use conversion and fertilization intensity gradients in tea plantations significantly modified fungal community structure and composition, with these changes being mainly driven by soil nutrient availability, including available phosphorus (AP), available potassium (AK), and total nitrogen (TN). In addition, fungal richness demonstrates a progressive decline across soil depth gradients (0-60 cm). Further analyses reveals that Dothideomycetes and Umbelopsidiomycetes exhibited significant positive correlations with soil C and N fractions, whereas Mortierellomycetes, Geminibasidiomycetes and Mucoromycotina_cls_Incertae_sedis showed pronounced negative correlations. Variations in the relative abundance of these taxa may strongly influence carbon and nitrogen cycling in tea plantation soils. Therefore, the conversion of forests to tea plantations and different fertilization management practices regulate soil carbon and nitrogen accumulation by influencing the structure of soil fungal communities and the abundance of dominant taxa.
    Reference | Related Articles | Metrics
    Design and Testing of Tea Garden Crawler Plowing Machine
    SHEN Shuai, REN Ning, ZHENG Hang, YU Guohong, CHEN Zhidong
    Journal of Tea Science    2025, 45 (2): 273-283.   DOI: 10.13305/j.cnki.jts.2025.02.003
    Abstract60)      PDF(pc) (1587KB)(13)       Save
    In response to the problems of inadequate agricultural equipment and poor slope performance in tea gardens of hilly areas, a tracked ploughing machine suitable for hilly tea plantations was designed and developed, with a focus on slope performance. The main structural parameters of the chassis were designed, and the dynamic simulation was used to analyze the machine's ability to traverse across and along slopes. The simulation results show that the maximum slope for the machine to traverse across was 22°, and the maximum slope for the machine to traverse along was 31°. To explore the quality of excavator tillage, based on the theoretical analysis of the tillage movement trajectory, the tillage advance speed was optimized by dynamics, and the optimal tillage advance speed of 400-450 mm·s-1 was obtained for excavators. To further verify the rationality of the parameters and the reliability of the simulation results, field tests were conducted on uphill slopes. The results show that the maximum climbing ability of the machine on uphill slopes was 32°, with an error of 3.22% compared to the theoretical climbing angle. The results validate the accuracy and reliability of the theoretical calculations and simulations, demonstrating that the designed ploughing machine has good maneuverability and can fully meet the uphill climbing needs of hilly areas, providing an effective solution to the problem of tea plantation cultivation.
    Reference | Related Articles | Metrics
    The Study of Volatile Components in Three Scented Types of Black Tea Based on HS-SPME-GC-MS and Molecular Docking Technology
    ZHANG Peng, HUANG Yan, WEI Chengjiang, ZHENG Zhiqiang, WU Weiwei, ZHENG Changkun, SHEN Weiwei, YU Yingjie, LIN Fuming, SUN Weijiang
    Journal of Tea Science    2025, 45 (2): 318-332.   DOI: 10.13305/j.cnki.jts.2025.02.007
    Abstract38)      PDF(pc) (3521KB)(12)       Save
    In recent years, honey-like, fruity, and herbal mint-scented black teas have attracted considerable consumer attention and preference. However, the underlying mechanisms of their aroma characteristics require further in-depth investigation and analysis. This study employed headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), combined with variable importance in projection (VIP) and relative odor activity value (ROAV) of orthogonal partial least squares-discriminant analysis (OPLS-DA) to identify key volatile compounds in three scented types of black tea. Molecular docking was then used to explore the binding sites and interactions between the key volatile compounds and olfactory receptors. The results show significant differences in the volatile component contents among the three scented types of black tea, with 13 volatile compounds identified as the critical contributors to these differences. In honey-like black tea, damascenone, benzaldehyde, and linalool oxide I were identified as the major volatile contributors. In fruity-scented black tea, heptanal, 3,6-nonadien-1-ol, 2-heptanone, (E)-citral, and 6-methyl-5-hepten-2-one played pivotal roles. While the cooling sensation in herbal mint-scented black tea was closely associated with methyl salicylate. Molecular docking analysis demonstrates that the key volatile compounds spontaneously bind to olfactory receptors OR1A1, OR1G1, OR2W1, OR5M3, OR7D4, and OR8D1, with OR1A1 identified as the primary receptor for perceiving these aroma characteristics. The binding was facilitated by hydrogen bonding and hydrophobic interactions with three amino acid residues (TYR258, PHE206, and VAL254) of OR1A1, promoting the presentation of the aroma profiles. This study elucidates the mechanisms for the characteristic aroma formations of these three scented types of black tea, providing a theoretical foundation for enhancing black tea flavor quality and achieving targeted processing.
    Reference | Related Articles | Metrics
    Optimization and Testing of Tea Garden Biomimetic Tillage Machine Based on DEM-MBD Coupling Algorithm
    JIA Zhijun, JIANG Jiayin, XU Jiajun, LI Yang, DONG Chunwang, SONG Wentao, LI Kai, WEI Chizhang, YAO Yuchen, YAO Lijian, YANG Zidong, LIU Haoyang, MA Rong
    Journal of Tea Science    2025, 45 (2): 284-302.   DOI: 10.13305/j.cnki.jts.2025.02.010
    Abstract35)      PDF(pc) (3657KB)(11)       Save
    To solve the problems of high resistance and poor operation efficiency caused by soil compaction and stickiness in tea plantation cultivation, this study designed a tea plantation composite biomimetic tillage shovel based on the mole claw toe as a biomimetic prototype, and integrated it with a four-bar mechanism to develop a tea garden tillage machine. Firstly, a simulation analysis of the tillage process of a tea garden bionic tillage shovel was carried out based on the coupling algorithm of Discrete Element Method (DEM) and Multi Body Dynamics (MBD). At the same time, Design Expert 13 experimental design software was used to design and carry out a three-factor three-level simulation orthogonal combination experiment. It was found that when the tillage depth was 100 mm, the optimal working parameters of the tea garden biomimetic tillage machine with a composite biomimetic tillage shovel were the plowing shovel insertion angle of 33.506°, the driving arm speed of 289.923 r·min-1, and the tillage machine forward speed of 0.2 m·s-1. Subsequently, a comparative analysis of soil disturbance simulation based on soil particle velocity distribution was conducted under these working parameters. Finally, a comparative experiment was conducted in tea gardens using a composite biomimetic tillage shovel and a prototype shovel under the same working parameters. The results show that compared with the prototype shovel, the average resistance of the tea garden biomimetic tillage machine equipped with a composite biomimetic shovel was reduced by 5.70%, and the performance evaluation indicators such as soil fragmentation rate were improved. Its working performance can meet the requirements of tea garden cultivation.
    Reference | Related Articles | Metrics
    Isolation and Identification of the Pathogen Causing Leaf Spot in Tea Plants
    YANG Fang, JIANG Bingbing, LEI Jinmei, GUO Cunwu, LI Limei, XU Jiayi, WANG Xinghua, YUAN Wenxia, WANG Baijuan
    Journal of Tea Science    2025, 45 (2): 266-272.   DOI: 10.13305/j.cnki.jts.2025.02.006
    Abstract42)      PDF(pc) (909KB)(9)       Save
    Tea plant [Camellia sinensis (L.) O. Kuntze] is an important agricultural economic crop in China. Tea leaf spot disease is one of the most important leaf diseases of tea plants. It seriously affects the yield and quality of tea. In 2023, a tea leaf spot disease was found in a tea garden in Menghai County, Xishuangbanna Dai Autonomous Prefecture Yunnan Province. In order to clarify the pathogen, the tissue isolation method and wound inoculation method were used to isolate and determine the pathogenicity of the pathogen. The morphological characteristics were observed and combined with molecular biology techniques to determine the type of pathogen. The results show that the three strains could infect tea leaves and were the causal agents of tea leaf spot. The pathogen causing tea leaf spot was identified as Nigrospora musae by observing its morphological characteristics and phylogenetic analysis of multiple genes (ITS, TUB2 and TEF-1α). The results of this study provided a theoretical basis for the prevention and control of tea leaf spot caused by the pathogen.
    Reference | Related Articles | Metrics
    Analysis of Codon Usage Bias in Chloroplast and Mitochondrial Genomes of Camellia sinensis cv.‘Zhuyeqi’
    ZENG Wenjuan, ZHU Youpeng, CHEN Jiaxin, LI Hongyu, WANG Shuanghui, GONG Yihui, CHEN Zhiyin
    Journal of Tea Science    2025, 45 (2): 201-218.   DOI: 10.13305/j.cnki.jts.2025.02.008
    Abstract45)      PDF(pc) (2717KB)(8)       Save
    Codon usage bias serves as an important driving force for gene expression regulation and molecular evolution, and is of particular importance in the study of plant organellar genomes. Camellia sinensis cv. ‘Zhuyeqi’, an important tea cultivar in China, has not yet received a systematic report on the codon usage patterns of its organellar genomes. This study was systematic bioinformatic analysis of the 52 chloroplast-encoded genes and 29 mitochondrial-encoded genes of ‘Zhuyeqi’. The results reveal that: (1) both the chloroplast genome (ENC=44.64±3.25) and the mitochondrial genome (ENC=51.98±3.47) exhibit weak codon usage bias, with the chloroplast bias primarily driven by natural selection (GC3s and ENC correlation R2=0.482). While the mitochondrial bias is jointly influenced by natural selection and mutational pressure (R2=0.312). (2) Relative synonymous codon usage (RSCU) analysis demonstrates that both organellar genomes significantly prefer synonymous codons ending in A/U, and the highly expressed chloroplast genes (rpoC2, psbA) exhibit stronger codon preferences. (3) a multi-parameter screening approach identified 20 optimal chloroplast codons (GCA, GCU) and 23 optimal mitochondrial codons (GCC, AGG). This study provided elucidation of the codon usage characteristics and evolutionary driving forces in the organellar genomes of Camellia sinensis cv. ‘Zhuyeqi’, offering crucial theoretical guidance for the optimization of the tea molecular breeding system and the efficient expression of exogenous genes.
    Reference | Related Articles | Metrics
    Identification of CsPATL Gene Family and Analysis of Upstream Transcriptional Regulation of CsPATL1
    WANG Jinbo, XIE Siyi, DOU Xiangya, SHEN Xiaohua, TIAN Na, LIU Shuoqian
    Journal of Tea Science    2025, 45 (2): 191-200.   DOI: 10.13305/j.cnki.jts.2025.02.005
    Abstract44)      PDF(pc) (1962KB)(6)       Save
    The Patellin (PATL) gene family is essential for plant growth, development and environmental adaptation. This study systematically identified and analyzed the CsPATL gene family in tea plants (Camellia sinensis). Five members of the CsPATL family were identified using a variety of bioinformatics techniques, and the physicochemical characteristics of their protein sequences were analyzed. The results show that the five CsPATL genes encode 232~585 amino acids, their molecular weights are 26.31~64.69 kDa, and their theoretical isoelectric points are 4.65~9.35. The chromosomal localization of these genes and the cis-elements in their promoter sequences were also analyzed in detail, and it was found that these genes were unevenly distributed on four chromosomes, and were mainly involved in phytohormone response, abiotic stress response, and light response, with light-responsive elements occupying a significant proportion in particular. Y1H, EMSA, and dual-luciferase assays confirm that Cshdz7 can directly bind to the CsPATL1 promoter and promote CsPATL1 gene expression. These findings provided a new perspective on the role of the CsPATL family genes in plant developmental regulation of tea plant development.
    Reference | Related Articles | Metrics
    Effects of Storage Time on Chemical Components and Taste Characteristics of ‘Rucheng Baimaocha’ White Tea
    XIE Mingwei, DING Shuqia, NIE Qing, ZHOU Linghong, WEN Haitao, CAI Shuxian
    Journal of Tea Science    2025, 45 (2): 333-345.   DOI: 10.13305/j.cnki.jts.20250319.001
    Abstract39)      PDF(pc) (2796KB)(5)       Save
    ‘Rucheng Baimaocha’ (Camellia pubescens) exhibits excellent suitability for white tea processing, yet research on its change during storage remains unexplored. The chemical composition and taste characteristics of Baihaoyinzhen and Shoumei produced from ‘Rucheng Baimaocha’ were analyzed by metabolomics, sensory evaluation and quantitative descriptive analysis (QDA) for different storage durations. The results demonstrate that storage duration exerted a more pronounced impact on the chemical composition of Shoumei compared to Baihaoyinzhen. Orthogonal partial least squares-discriminant analysis (OPLS-DA) identified 349 and 805 differential metabolites in Baihaoyinzhen and Shoumei samples, respectively. Compared to tea samples stored for 1 year, Baihaoyinzhen stored for 7 years exhibited increased levels of alkaloids, amino acids and their derivatives, lipids, nucleotides and their derivatives, organic acids and terpenes. While its flavonoids and other compounds showed decreased levels. In contrast, Shoumei stored for 7 years displayed significant reductions in alkaloids, amino acids and their derivatives, flavonoids, lignans and coumarins, lipids, phenolic acids, tannins and quinones, and other compounds. The contents of eight compounds, including 4-methylphenol and 2-hydroxyphenylacetic acid, showed a positive correlation with storage duration. Changes in the levels of taste -related compounds such as theanine and arginine led to alterations in the tea's taste characteristics. Additionally, bioactive components like kaempferol, cyclo(proline-leucine), and agmatine increased after storage, enhancing the health-promoting effects of ‘Rucheng Baimaocha’ white tea. The research findings provided references and a theoretical basis for the scientific storage and quality improvement of ‘Rucheng Baimaocha’ white tea.
    Reference | Related Articles | Metrics